学习增强的演化灰盒动态优化算法研究

批准号:
62006110
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
朱涛
依托单位:
学科分类:
人工智能基础
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
朱涛
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
绝大多数现有演化动态优化研究假设问题是黑盒,但现实应用中许多动态优化问题是灰盒:虽然没有具体的数学表达式,但影响问题最优解的环境状态参数可以观测。合理利用这些参数,有助于提高算法寻优效率。针对这类灰盒问题,本项目研究学习增强的演化灰盒动态优化算法,重点解决两个问题:如何学习参数与最优解的关系,以及如何利用习得的关系增强算法性能。首先针对不同关系类型,分别研究基于函数模型的学习、基于条件概率模型的学习和基于代理模型的学习。然后研究应用模型,分别在种群初始化阶段和种群演化阶段增强演化算法的性能,以及多种增强策略的集成方法。最后,研究灰盒动态优化问题的建模和基准测试函数集的构造,以及学习增强的演化灰盒动态优化算法在动态电力潮流计算和动态旅行商问题中的应用。本项目有广泛的应用背景,研究内容有特色和创新,具有一定的理论和应用价值。
英文摘要
Most of the existing evolutionary dynamic optimization studies assume that problems are black boxes, but many dynamic optimization problems in real-world applications are gray boxes: although the specific mathematical expressions of the problem are not available, the environmental state parameters that affect the optimal solution can be observed. Using these parameters properly can help to improve the performance of optimization algorithms. For such gray box problems, leaning enhanced evolutionary gray-box dynamic optimization algorithms are studied in this proposal. We focus on two issues: how to learn the relationships between parameters and optimal solutions, and how to apply learned relationships to enhance algorithm performance. Firstly, for different types of relationships, functional model, conditional probability model, and surrogate model are studied, respectively. Secondly, the application strategies of the learned models are investigated to enhance the performance of evolutionary algorithms, at the population initiation and evolution stages, respectively, as well as the ensemble of multiple strategies. Finally, the modeling and benchmark function sets for gray box dynamic optimization problems are investigated, as well as the application of proposed algorithms to dynamic power flow and dynamic traveling salesman problems. This proposal has a broader application background. Its research content is somehow novel. Therefore, this proposal has theoretical and application value to some degree.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Parameter identification and state estimation for nuclear reactor operation digital twin
核反应堆运行数字孪生参数识别与状态估计
DOI:10.1016/j.anucene.2022.109497
发表时间:2022-10-14
期刊:ANNALS OF NUCLEAR ENERGY
影响因子:1.9
作者:Gong, Helin;Zhu, Tao;Li, Qing
通讯作者:Li, Qing
DOI:10.1109/tim.2023.3273673
发表时间:2023-03
期刊:IEEE Transactions on Instrumentation and Measurement
影响因子:5.6
作者:Furong Duan;Tao Zhu;Jinqiang Wang;L. Chen;Huansheng Ning;Yaping Wan
通讯作者:Furong Duan;Tao Zhu;Jinqiang Wang;L. Chen;Huansheng Ning;Yaping Wan
DOI:10.3390/e25020259
发表时间:2023-01-31
期刊:ENTROPY
影响因子:2.7
作者:Ling, Huidong;Zhu, Xinmu;Zhu, Tao;Nie, Mingxing;Liu, Zhenghai;Liu, Zhenyu
通讯作者:Liu, Zhenyu
DOI:10.3390/info12120530
发表时间:2021-12
期刊:Inf.
影响因子:--
作者:Congmin Yang;Tao Zhu;Yang Zhang;Huansheng Ning;L. Chen;Zhenyu Liu
通讯作者:Congmin Yang;Tao Zhu;Yang Zhang;Huansheng Ning;L. Chen;Zhenyu Liu
DOI:10.1109/jiot.2023.3239945
发表时间:2022-03
期刊:IEEE Internet of Things Journal
影响因子:10.6
作者:Jinqiang Wang;Tao Zhu;L. Chen;Huansheng Ning;Yaping Wan
通讯作者:Jinqiang Wang;Tao Zhu;L. Chen;Huansheng Ning;Yaping Wan
基于传感器和对比学习的日常活动识别研究
- 批准号:2023JJ30518
- 项目类别:省市级项目
- 资助金额:0.0万元
- 批准年份:2023
- 负责人:朱涛
- 依托单位:
演化动态优化中灰盒问题的模型和算法研究
- 批准号:2019JJ50499
- 项目类别:省市级项目
- 资助金额:0.0万元
- 批准年份:2019
- 负责人:朱涛
- 依托单位:
国内基金
海外基金
