模型平均方法在计量经济学和统计学中的新研究
结题报告
批准号:
71973116
项目类别:
面上项目
资助金额:
50.0 万元
负责人:
温子坚
学科分类:
计量经济与经济统计
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
温子坚
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
近年来,由于频率模型平均方法能够提供更好的估计和预测,所以引起了研究学者的普遍关注。相较于传统的模型选择方法,模型平均考虑了各个模型的不确定性,把来自不同模型的估计和预测加权起来对总体进行推断。这种平均的思想可以避免选择一个较差的模型,因此有望降低估计风险。本项目拟探究频率模型平均方法在理论和实践中亟待解决的若干问题,具体包括以下三点:一是分别研究区间值数据、长度偏差数据和处理效应模型下的模型平均估计,并证明这些特殊数据类型下权重选择准则的渐近最优性;二是理论推导出非“局部误设定”假设下常见模型平均估计量(S-AIC, S-BIC, Mallows' 和Jackknife)的渐近分布;三是通过模型平均方法对一些中国大陆和香港经济指数进行修正并做成实际案例。另外,为了方便实际工作者应用模型平均方法,本项目也计划开发频率模型平均方法的R语言程序包。
英文摘要
The widespread findings that model averaging can lead to better estimators have attracted a great deal of attention in recent years. Compared with traditional model selection methods, model averaging allows for model uncertainty and weights the estimates or predictions from different models to infer the population. Averaging shields against the choice of a very poor model, and thus holds promise for reducing estimation risk. The proposal contains three subprojects that seek to expand our knowledge of model averaging in areas that have been unexplored or insufficiently investigated. The first subproject develops model averaging methods under interval-value and length biased data, and considers model averaging for estimating “treatment effects”, a term commonly used to refer to the causal effects of a binary variable on an outcome variable of scientific or policy interest. Our second subproject investigates post-model averaging inference by deriving the distributions of some commonly used model average estimators (S-AIC, S-BIC, Mallows' and Jackknife). Our work will consider a fixed parameter setup, and the results developed will have broader applicability than those obtained under local misspecification. The last part of the project considers using model averaging to improve the methodology associated with the construction of several highly popular Chinese and Hong Kong economic indices, including the Centa-City Index, the Chinese Consumer Confidence Index and the Consumer Satisfaction Index. In addition, we will develop an R language package for the proposed methods.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.3389/fenrg.2021.707937
发表时间:2021-08-19
期刊:FRONTIERS IN ENERGY RESEARCH
影响因子:3.4
作者:Huang, Bai;Sun, Yuying;Wang, Shouyang
通讯作者:Wang, Shouyang
DOI:10.1080/07350015.2021.2006668
发表时间:2021-11
期刊:Journal of Business & Economic Statistics
影响因子:3
作者:Rong Zhu;Xinyu Zhang;Alan T. K. Wan;Guohua Zou
通讯作者:Rong Zhu;Xinyu Zhang;Alan T. K. Wan;Guohua Zou
DOI:10.1016/j.jspi.2022.03.002
发表时间:2022-03
期刊:Journal of Statistical Planning and Inference
影响因子:0.9
作者:Rong Zhu;Xinyu Zhang;Alan T. K. Wan;Guohua Zou
通讯作者:Rong Zhu;Xinyu Zhang;Alan T. K. Wan;Guohua Zou
DOI:10.1016/j.jmva.2021.104858
发表时间:2021-11
期刊:J. Multivar. Anal.
影响因子:--
作者:Jun Liao;Alan T. K. Wan;Shuyuan He;Guohua Zou
通讯作者:Jun Liao;Alan T. K. Wan;Shuyuan He;Guohua Zou
DOI:--
发表时间:2023
期刊:Journal of Systems Science and Complexity
影响因子:--
作者:Ziheng Feng;Xianpeng Zong;Tianfa Xie;Xinyu Zhang
通讯作者:Xinyu Zhang
大数据下U-ERM分布式估计理论与方法研究
国内基金
海外基金