课题基金基金详情
基于时滞与多传播途径的传染病模型的动力学研究
结题报告
批准号:
11971285
项目类别:
面上项目
资助金额:
52.0 万元
负责人:
舒洪英
依托单位:
学科分类:
生物与生命科学中的数学
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
舒洪英
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
传染病的爆发对人类社会和经济造成很大的影响。现有的大部分数学方法和工具仅适用于简单的传染病模型,很多关键因素如时滞、空间异质、周期和多传播途径被忽略或简化,所得的理论结果与现实应用可能产生偏差。为此,本项目将利用时滞微分方程、时滞偏微分方程和时滞周期系统来建立更符合实际应用的传染病动力学模型,研究传染病在空间上的传播机制、在时间上的演变规律以及防控策略的优化,揭示时滞、多传播途径、控制函数等关键因子对传染病传播速度、爆发强度和多爆发高峰的影响,以减小基本再生数和空间传播速度为目标确定用药的最佳组合,通过构造新的Lyapunov泛函和上下解、发明新的谱方法和数值计算方法等来证明平衡态的全局稳定性和行波解的存在性、计算疾病的基本再生数、求解最优的疾病防控措施。本项目将拓展基于时滞和多传播途径的传染病模型动力学的基本理论,丰富传染病模型的研究方法,为传染病的防控和治疗提出有效合理的方案。
英文摘要
The outbreaks of infectious diseases have made serious impacts on human society and economics. Most of the theoretical tools and mathematical methods are only applicable to simplified infectious disease models, where many key factors such as time delay, spatial heterogeneity, period and multiple transmission mechanisms are ignored or simplified. The corresponding theoretical results may diverge from real applications. In this project, we will use delay differential equations, delay partial differential equations, and delay periodic systems to construct dynamical models for infectious disease models which are more relevant with real applications, investigate the spatial propagation, time evolution and optimal control of infectious diseases, reveal the impacts of critical factors such as delay, multiple transmission mechanisms and control functions on the propagation speed, outbreak strength and multiple peaks, find the optimal drug therapy which minimizes basic reproduction number and spatial propagation speed, construct new Lyapunov functional and upper and lower solutions, develop new spectral method and numerical algorithm, prove global stability of steady states and existence of traveling wave solutions, calculate basic reproduction number of the disease, and find the optimal control strategy. The research outcomes will help to extend the existing theory in dynamics of infectious disease models with multiple transmission mechanisms and time delays, enrich the analytic methods of infectious disease models, and design effective and realistic control strategies of infectious diseases.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:https://doi.org/10.1007/s00285-023-01916-6
发表时间:2023
期刊:Journal of Mathematical Biology
影响因子:--
作者:Wanxiao Xu;舒洪英;Lin Wang;Xiang-Sheng Wang;James Watmough
通讯作者:James Watmough
Dirichlet problem for a diffusive logistic population model with two delays
具有两次延迟的扩散逻辑总体模型的狄利克雷问题
DOI:10.3934/dcdss.2020134
发表时间:2020
期刊:DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS SERIES S
影响因子:--
作者:潘雪军;舒洪英;Yuming Chen
通讯作者:Yuming Chen
DOI:https://doi.org/10.1016/j.matpur.2020.03.011
发表时间:2020
期刊:Journal de Mathematiques Pures et Appliquees
影响因子:--
作者:舒洪英;Zongwei Ma;Xiangsheng Wang;Lin Wang
通讯作者:Lin Wang
DOI:https://doi.org/10.1080/00036811.2021.1951715
发表时间:2021
期刊:Applicable Analysis
影响因子:--
作者:舒洪英;Xuejun Pan;Bruce Wade;Xiang-Sheng Wang
通讯作者:Xiang-Sheng Wang
DOI:10.3934/mbe.2023562
发表时间:2023-05
期刊:Mathematical biosciences and engineering : MBE
影响因子:--
作者:Wanxiao Xu;Ping Jiang;Hongying Shu;Shanshan Tong
通讯作者:Wanxiao Xu;Ping Jiang;Hongying Shu;Shanshan Tong
滞育与空间异质诱导生态种群建模与时空动力研究
  • 批准号:
    12371495
  • 项目类别:
    面上项目
  • 资助金额:
    44.00万元
  • 批准年份:
    2023
  • 负责人:
    舒洪英
  • 依托单位:
国内基金
海外基金