面向小目标检测的多任务深度网络及其若干关键问题研究
结题报告
批准号:
61976079
项目类别:
面上项目
资助金额:
61.0 万元
负责人:
赵仲秋
依托单位:
学科分类:
机器感知与机器视觉
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
赵仲秋
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
利用具备相关性和互补性的辅助视觉任务来构建多任务深度网络模型,是提升机器视觉感知能力的突破方向。针对小目标特征粗糙和信息比例小等问题,构建面向小目标检测的多任务协同深度网络,解决若干关键问题:(1)构建基于多尺度特征重建的多任务网络模型,解决图像超分辨率网络与目标检测网络的多尺度特征融合结构差异问题,提出参数共享和对抗学习的skip-connection多尺度特征重建结构;(2)构建基于上下文特征融合的多任务网络模型,提出基于语义分割和目标检测的多任务深度网络及其特征交互共享结构,研究基于注意力机制的上下文特征融合方法,并进行小目标检测的语义特征可视化解析;(3)研究基于coarse-to-fine和弱监督学习的多任务网络学习方法,解决多任务训练数据集不匹配问题;(4)构建多任务深度网络动态协同训练的马尔科夫决策过程模型,研究基于强化学习的多任务网络动态协同优化方法,提高学习效率和性能。
英文摘要
Constructing multi-task deep neural networks with relevant and complementary visual tasks is a breakthrough research direction to improve visual perception capability of computers. Focusing on the issues such as rough features and small percentage of information in small object detection, this project will study multi-task collaborative deep networks, and solve several key problems: (1) We will construct a multi-task network model with multi-scale feature reconstruction, solving the problem of the difference between the multi-scale feature fusion structures of image super-resolution network and object detection network. Thereby, we will propose a skip-connection network structure with multi-scale feature reconstruction based on parameter sharing and adversarial learning. (2) We will construct a multi-task network model with context feature fusion by combining semantic segmentation and object detection, where the features are interacted and shared between tasks. Also we will study a context feature fusion method based on attention mechanism, and will analyze the semantic features for small object detection by visualizing them. (3) We will study the learning methods for multi-task network based on coarse-to-fine strategy and weakly supervised learning, solving the mismatch problem of training datasets. (4) We will construct a Markov decision process model for the dynamic and collaborative training of multi-task deep network, by which we will propose an optimization method based on reinforcement learning to improve learning efficiency and performance of the multi-task network.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.patcog.2023.110142
发表时间:2023-11
期刊:Pattern Recognit.
影响因子:--
作者:Ran Chen;Hao Shen;Zhong-Qiu Zhao;Yi Yang;Zhao Zhang
通讯作者:Ran Chen;Hao Shen;Zhong-Qiu Zhao;Yi Yang;Zhao Zhang
An improved steganography without embedding based on attention GAN
一种基于注意力GAN的改进的无嵌入隐写术
DOI:10.1007/s12083-020-01033-x
发表时间:2021-01-03
期刊:PEER-TO-PEER NETWORKING AND APPLICATIONS
影响因子:4.2
作者:Yu, Cong;Hu, Donghui;Zhao, Zhong-qiu
通讯作者:Zhao, Zhong-qiu
DOI:https://doi.org/10.1016/j.patcog.2022.108909
发表时间:2022
期刊:Pattern Recognition
影响因子:--
作者:Shen H.;Zhao Z.Q.;Liao W.;Tian W.;Huang D.S.
通讯作者:Huang D.S.
增长的卷积神经网络模型中的若干关键问题研究
  • 批准号:
    61672203
  • 项目类别:
    面上项目
  • 资助金额:
    65.0万元
  • 批准年份:
    2016
  • 负责人:
    赵仲秋
  • 依托单位:
基于耦合判别和协作稀疏表示的图像表征和标注研究
  • 批准号:
    61375047
  • 项目类别:
    面上项目
  • 资助金额:
    78.0万元
  • 批准年份:
    2013
  • 负责人:
    赵仲秋
  • 依托单位:
约束最大差异投影在基于内容的多样化图像检索中的应用研究
  • 批准号:
    61005007
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    22.0万元
  • 批准年份:
    2010
  • 负责人:
    赵仲秋
  • 依托单位:
国内基金
海外基金