脑卒中相关血管床粥样硬化斑块的快速磁共振成像及智能诊断研究

批准号:
81830056
项目类别:
重点项目
资助金额:
294.0 万元
负责人:
刘新
依托单位:
学科分类:
磁共振成像
结题年份:
2023
批准年份:
2018
项目状态:
已结题
项目参与者:
刘新
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
面向脑卒中早期预防和病因探寻的重大需求,本项目拟研究用于缺血性脑卒中血管斑块的快速磁共振成像及智能诊断新方法。针对现有技术采集时间过长图像质量不稳定等问题,研究新型三维血管壁成像序列和基于压缩感知的快速重建算法,以及与人工智能诊断相关的血管中心线跟踪算法、主动标记、深度学习Dense-UNet网络等。重点解决卷积特征图像重建框架及其对图像信噪比的影响、适应多种复杂组织信号演变的可变翻转角算法、针对斑块数据特征的高效网络结构设计方法与训练策略等关键科学问题。预期在国产3T磁共振实现头颈一体和主动脉血管壁成像各在5分钟以内完成,空间分辨率分别达到0.5mm和1mm各向同性,并实现对斑块的智能识别和分类,相似度和重叠度分别达到0.95和0.90。本项目的实施不仅为我国脑卒中防治提供一种更加先进有效的手段,而且有助于提高我国在高端磁共振成像和人工智能领域的自主知识产权和国际竞争力。
英文摘要
The project aims to develop fast MR imaging techniques and intelligent diagnostic methods for early detection of culprit plaques for stroke. To address the several challenges including long acquisition time and unstable image quality which limiting the ability to identify plaques automatically, we plan to develop a new 3D vessel wall imaging technique, compressed sensing based fast imaging reconstruction algorithms, curved planar reconstruction algorithms based on vessel centerline tracking, active label, and plaque identification and classification using DenseNet and UNet (DUNet). Several key issues will be investigated including (1) reconstruction framework based on convolution features and its effect on signal-to-noise ratio of MR images; (2) variable flip angle calculated algorithm apply to signal evolution of multiple complex tissue; (3) framework parameters selection and training mode optimization of DUNet. We expect to complete intra- and extra-cranial arterial wall joint imaging and aortic arterial wall imaging separately in 5 minutes with isotropic spatial resolution of 0.5mm and 1mm, respectively, and to achieve accurate identification and classification of stroke plaques based on artificial intelligence with intraclass correlation coefficient 0.95 and dice coefficient 0.9.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.3389/fnins.2022.888814
发表时间:2022
期刊:FRONTIERS IN NEUROSCIENCE
影响因子:4.3
作者:Xu, Wenjing;Yang, Xiong;Li, Yikang;Jiang, Guihua;Jia, Sen;Gong, Zhenhuan;Mao, Yufei;Zhang, Shuheng;Teng, Yanqun;Zhu, Jiayu;He, Qiang;Wan, Liwen;Liang, Dong;Li, Ye;Hu, Zhanli;Zheng, Hairong;Liu, Xin;Zhang, Na
通讯作者:Zhang, Na
High-Resolution Magnetic Resonance Imaging of Cervicocranial Artery Dissection Imaging Features Associated With Stroke
与中风相关的颈颅动脉解剖成像特征的高分辨率磁共振成像
DOI:10.1161/strokeaha.119.026362
发表时间:2019-11-01
期刊:STROKE
影响因子:8.3
作者:Wu, Ye;Wu, Fang;Yang, Qi
通讯作者:Yang, Qi
Reproducibility of simultaneous imaging of intracranial and extracranial arterial vessel walls using an improved T1-weighted DANTE-SPACE sequence on a 3 T MR system
在 3 T MR 系统上使用改进的 T1 加权 DANTE-SPACE 序列对颅内和颅外动脉血管壁进行同步成像的再现性
DOI:10.1016/j.mri.2019.04.016
发表时间:2019
期刊:Magnetic Resonance Imaging
影响因子:2.5
作者:Wan Liwen;Zhang Na;Zhang Lei;Long Xiaojin;Jia Seng;Li Ye;Liang Dong;Zheng Hairong;Liu Xin
通讯作者:Liu Xin
D-UNet: A Dimension-Fusion U Shape Network for Chronic Stroke Lesion Segmentation
D-UNet:用于慢性中风病变分割的维度融合U形网络
DOI:10.1109/tcbb.2019.2939522
发表时间:2021-05-01
期刊:IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
影响因子:4.5
作者:Zhou, Yongjin;Huang, Weijian;Wang, Shanshan
通讯作者:Wang, Shanshan
Arterial culprit plaque characteristics revealed by magnetic resonance Vessel Wall imaging in patients with single or multiple infarcts
磁共振血管壁成像揭示单发或多发梗塞患者的动脉罪魁祸首特征
DOI:10.1016/j.mri.2020.06.004
发表时间:2021-09-15
期刊:MAGNETIC RESONANCE IMAGING
影响因子:2.5
作者:Zhang, Na;Lyu, Jinhao;Liu, Xin
通讯作者:Liu, Xin
基于血流散相和稳态自由进动的非增强磁共振血管成像
- 批准号:81071147
- 项目类别:面上项目
- 资助金额:32.0万元
- 批准年份:2010
- 负责人:刘新
- 依托单位:
国内基金
海外基金
