基于深度学习的大规模3D人脸识别关键技术研究
结题报告
批准号:
61976173
项目类别:
面上项目
资助金额:
58.0 万元
负责人:
李慧斌
依托单位:
学科分类:
模式识别与数据挖掘
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
李慧斌
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
本项目旨在研发识别精度高、安全性能好、抗干扰能力强的大规模3D人脸识别系统。聚焦深度学习框架下大规模3D人脸识别所面临的数据匮乏、特征表达及识别、3D面具防伪、对抗样本攻击及防御四个一体化技术瓶颈问题。旨在解决上述瓶颈背后的五个关键科学问题:1.深度编码-解码网络学习框架的大规模非线性判别式3D人脸重建方法;2.基于深度融合、迁移、协同学习的2D辅助大规模3D人脸识别方法;3.基于几何深度学习的3D人脸形状特征学习匹配及识别方法;4.基于深度学习的面部时空模态多属性特征联合学习的3D面具防御策略;5.基于最优化问题扰动分析理论的3D人脸对抗样本攻击及防御机理。项目研究内容紧密相关、逐层递进、共同围绕3D人脸识别系统的识别精度、安全性和鲁棒性三个核心要素。本项目属于典型的“需求牵引,突破瓶颈”类型科学问题。项目的顺利实施将为我国3D人脸识别技术迈向实际应用奠定理论和技术研究基础。
英文摘要
The aim of this proposal is to develop high-accuracy, high-security, and high-robustness large scale three-dimensional (3D) face recognition system. In particularly, we are focusing on the following bottleneck problems under the framework of deep learning-based large-scale 3D face recognition: the lack of 3D face data, learning representation for 3D face and improving the accuracy of 3D face recognition techniques, 3D mask face anti-spoofing, attacking and defensing 3D face adversarial samples. We are aiming to solve the core scientific issues behind the technical bottlenecks mentioned above: 1. Discriminative and non-linearly large-scale 3D face reconstruction methods based on deep auto-encoder and decoder neural network; 2. 2D-aided large-scale 3D face recognition methods based on deep fusion learning, deep transfer learning, and deep co-training; 3. Geometric deep learning based 3D face shape feature learning, matching and recognition methods; 4. 3D mask face anti-spoofing techniques based on deep joint learning the temporal-spatial and modality multiple facial attributes; 5. Attacking and defensing adversarial samples based on perturbation analysis theory of the optimization. All the research topics are closely related, progressive-like and focusing on the three core factors of accuracy, security, and robustness of 3D face recognition system. This project belongs to a typical scientific problem of "demand pull, break through bottleneck" type. Successfully running of this proposal will establish the theory and technique basis for the real application of 3D face recognition techniques in our country.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.19678/j.issn.1000-3428.0064294
发表时间:2022
期刊:计算机工程
影响因子:--
作者:尹晨阳;职恒辉;李慧斌
通讯作者:李慧斌
DOI:10.3390/s22145193
发表时间:2022-07-11
期刊:Sensors (Basel, Switzerland)
影响因子:--
作者:
通讯作者:
DOI:10.3969/j.issn.1005-3085.2021.04.001
发表时间:2021
期刊:工程数学学报
影响因子:--
作者:余璀璨;李慧斌
通讯作者:李慧斌
DOI:10.3778/j.issn.1002-8331.2210-0041
发表时间:2023
期刊:计算机工程与应用
影响因子:--
作者:王静婷;李慧斌
通讯作者:李慧斌
DOI:10.1016/j.cviu.2021.103244
发表时间:2021
期刊:Computer Vision and Image Understanding
影响因子:--
作者:Cuican Yu;Zihui Zhang;Huibin Li;Jian Sun;Zongben Xu
通讯作者:Zongben Xu
基于Ricci流与Normal Cycle理论的非限制环境下三维人脸识别研究
  • 批准号:
    11401464
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    22.0万元
  • 批准年份:
    2014
  • 负责人:
    李慧斌
  • 依托单位:
国内基金
海外基金