应用深度学习构建直肠癌区域淋巴结转移的影像辅助诊断模型
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
区域淋巴结转移是影响直肠癌临床治疗决策和预后的主要因素之一。目前临床上区域淋巴结转移评价主要依靠影像医生根据淋巴结大小、形状、内部信号等征象进行主观判断,诊断准确率不高、诊断时间较长并受限于评价者自身经验。新辅助治疗引起的纤维化反应进一步增加了评估区域淋巴结状态的难度。MRI功能成像技术及定量参数虽然可以提高区域淋巴结转移诊断的敏感性,但并不能提高总体诊断准确率。深度学习方法给直肠癌区域淋巴结诊断的医学影像智能分析带来了新的思路。目前尚缺乏深度学习在直肠癌区域淋巴结区域分割或 转移诊断的应用研究报道。本研究拟应用深度学习方法和多模态磁共振参数构建直肠癌区域淋巴结转移的辅助诊断模型,研究将开展前瞻性研究实现MRI图像标记淋巴结与病理检出淋巴结的一一对应,提取与淋巴结转移直接相关的特征,构建高灵敏度、高特异度的智能化、可视化计算机辅助工具,协助影像医生提高直肠癌区域淋巴结诊断准确率。
英文摘要
Regional lymph node metastasis is one of the key factors that affect the clinical treatment decision and prognosis of rectal cancer. At present, the clinical evaluation of regional lymph node metastasis mainly depends on the subjective judgment of radiologists according to the size, shape and internal signal of lymph nodes. The existing problems were low diagnostic accuracy, long diagnostic time and limited experience of the radiologists. Fibrosis induced by neoadjuvant therapy further increases the difficulty of assessing regional lymph node status. Functional MRI and its quantitative parameters can improve the sensitivity of assessing regional lymph node metastasis, but can not improve the overall diagnostic accuracy. Deep learning method brings a new idea to the intelligent analysis of medical imaging for regional lymph node diagnosis of rectal cancer. At present, there is no report on the application of deep learning in regional lymph node segmentation or metastasis diagnosis of rectal cancer. In this study, we propose to construct an auxiliary diagnostic model for regional lymph node metastasis of rectal cancer using deep learning method and multimodal magnetic resonance parameters. We will carry out a prospective study to achieve a one-to-one correspondence between MRI-labeled lymph nodes and pathologically detected lymph nodes, extract features directly related to lymph node metastasis, and construct a highly sensitive and high-quality model. Intelligent and visualized computer aided tools with both high sensitivity and specificity will help radiologists to improve the accuracy of regional lymph node diagnosis of rectal cancer.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.3760/cma.j.cn112149-20211221-01125
发表时间:2023
期刊:中华放射学杂志
影响因子:--
作者:李清扬;张晓燕;孙应实
通讯作者:孙应实
Automatic segmentation of rectal tumor on diffusion-weighted images by deep learning with U-Net.
通过 U-Net 深度学习在扩散加权图像上自动分割直肠肿瘤
DOI:10.1002/acm2.13381
发表时间:2021-09
期刊:Journal of applied clinical medical physics
影响因子:2.1
作者:Zhu HT;Zhang XY;Shi YJ;Li XT;Sun YS
通讯作者:Sun YS
Magnetic resonance imaging tumor response score (mrTRS) predicts therapeutic effect and prognosis of locally advanced rectal cancer after neoadjuvant chemoradiotherapy: A prospective, multi-center study
磁共振成像肿瘤反应评分(mrTRS)预测局部晚期直肠癌新辅助放化疗后的治疗效果和预后:一项前瞻性、多中心研究
DOI:10.1016/j.radonc.2020.08.028
发表时间:2020-10-01
期刊:RADIOTHERAPY AND ONCOLOGY
影响因子:5.7
作者:Guan, Zhen;Sun, Rui-Jia;Sun, Ying-Shi
通讯作者:Sun, Ying-Shi
DOI:--
发表时间:2021
期刊:外科理论与实践
影响因子:--
作者:孙应实;卢巧媛;管真;张晓燕
通讯作者:张晓燕
Contrast-enhanced MRI for T Restaging of Locally Advanced Rectal Cancer Following Neoadjuvant Chemotherapy and Radiation Therapy
对比增强 MRI 用于新辅助化疗和放疗后局部晚期直肠癌 T 再分期
DOI:10.1148/radiol.212905
发表时间:2022
期刊:Radiology
影响因子:19.7
作者:Qiao-Yuan Lu;Zhen Guan;Xiao-Yan Zhang;Xiao-Ting Li;Rui-Jia Sun;Qing-Yang Li;Ying-Shi Sun
通讯作者:Ying-Shi Sun
基于多模态融合自动分割的直肠癌疗效评价的端对端模型研究
- 批准号:--
- 项目类别:面上项目
- 资助金额:52万元
- 批准年份:2022
- 负责人:孙应实
- 依托单位:
应用深度学习技术建立多模态直肠癌术前放化疗后肿瘤退缩分级的智能诊断模型
- 批准号:91959116
- 项目类别:重大研究计划
- 资助金额:80.0万元
- 批准年份:2019
- 负责人:孙应实
- 依托单位:
3T磁共振非高斯模型扩散成像评价直肠癌放疗疗效的定量化分析
- 批准号:81471640
- 项目类别:面上项目
- 资助金额:75.0万元
- 批准年份:2014
- 负责人:孙应实
- 依托单位:
应用多模态在体影像方法研究直肠癌放疗疗效的精确量化分析
- 批准号:81071129
- 项目类别:面上项目
- 资助金额:31.0万元
- 批准年份:2010
- 负责人:孙应实
- 依托单位:
国内基金
海外基金















{{item.name}}会员


