酿酒酵母甲酸代谢途径的理性设计与适应进化
批准号:
21978014
项目类别:
面上项目
资助金额:
65.0 万元
负责人:
范立海
依托单位:
学科分类:
生物化工与合成生物工程
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
范立海
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
酿酒酵母是构建细胞工厂的重要平台微生物,而甲酸结构简单、来源丰富,且易于储存和运输。本项目以酿酒酵母高效利用甲酸为目的,研究内容包括:借鉴真核生物的甲醇利用机制,设计新型甲酸同化途径,并结合木糖代谢途径优选甲酸还原反应;利用果糖-6-磷酸的积累推动非氧化戊糖磷酸途径再生关键底物-木酮糖-5-磷酸;通过弱化甲酸氧化途径,减少甲酸损耗;借助基于梯度混合碳源的适应进化,解决甲酸同化途径、甲酸氧化途径、磷酸戊糖再生途径和糖酵解途径之间的适配问题和细胞的甲酸耐受问题;利用组学分析,确定进化突变的关键靶基因信息,并阐明途径之间的互作机制、适配策略以及甲酸耐受的强化机理;采用间接反馈控制式流加培养提高细胞的甲酸利用效率,发挥甲酸代谢途径的应用潜力。本项目的实施有望为酿酒酵母提供甲酸高效利用的实现策略,研究成果有助于进一步拓展酿酒酵母在生物炼制中的应用前景。
英文摘要
Saccharomyces cerevisiae is an important platform microorganism for cell factory construction, while formic acid has a simple structure, abundant sources, and is easy to be stored and transported. This project aims to develop a metabolically engineered S. cerevisiae that is capable of efficient use of formic acid as carbon source. It includes the following researches: Design a new formic acid assimilation pathway based on the methanol utilization mechanism of eukaryotes. Optimize the reduction reaction for formic acid with use of the xylose metabolic pathway. Force the non-oxidative pentose phosphate pathway to regenerate the key substrate, xylulose-5-phosphate, via fructose-6-phosphate accumulation. Reduce the loss of formic acid by weakening the formic acid oxidation pathway. Balance the formic acid assimilation pathway, the formic acid oxidation pathway, the phosphate pentose regeneration pathway, and the glycolytic pathway by the adaptive evolution using a gradient mixed carbon source. Meanwhile, increase the cell tolerance to formic acid. Identify the target genes through omics analysis. Clarify the interaction mechanisms between different pathways and the mechanisms of strengthening the formic acid tolerance. Improve the formic acid utilization via indirect feedback batch operation. This work will provide a strategy for S. cerevisiae to efficiently utilize formic acid, and promote the application of S. cerevisiae in biorefinery.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.3389/fbioe.2022.1050808
发表时间:2022
期刊:FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY
影响因子:5.7
作者:Zheng, Ling-Jie;Guo, Qiang;Zhang, Ya-Xing;Liu, Chen-Yang;Fan, Li-Hai;Zheng, Hui-Dong
通讯作者:Zheng, Hui-Dong
Engineering Escherichia coli for D‑Allulose Production from D‑Fructose by Fermentation
工程大肠杆菌用于通过发酵从 D-果糖生产 D-阿洛酮糖
DOI:--
发表时间:2021
期刊:Journal of Agricultural and Food Chemistry
影响因子:6.1
作者:Qiang Guo;Ling-Jie Zheng;Xuan Luo;Xin-Quan Gao;Chen-Yang Liu;Li Deng;Li-Hai Fan;Hui-Dong Zheng
通讯作者:Hui-Dong Zheng
DOI:10.1021/acs.jafc.2c06616
发表时间:2022-10
期刊:Journal of agricultural and food chemistry
影响因子:6.1
作者:Q. Guo;Mei-Ming Liu;Shang-He Zheng;Ling-Jie Zheng;Qian Ma;Ying-Kai Cheng;Su-ying Zhao;Li-Hai Fa
通讯作者:Q. Guo;Mei-Ming Liu;Shang-He Zheng;Ling-Jie Zheng;Qian Ma;Ying-Kai Cheng;Su-ying Zhao;Li-Hai Fa
Intelligent self-control of carbon metabolic flux in SecY-engineered Escherichia coli for xylitol biosynthesis from xylose-glucose mixtures
SecY工程大肠杆菌中碳代谢通量的智能自控用于从木糖-葡萄糖混合物生物合成木糖醇
DOI:10.1002/bit.28002
发表时间:--
期刊:Biotechnology and Bioengineering
影响因子:3.8
作者:Qiang Guo;Irfan Ullah;Ling‐Jie Zheng;Xin‐Quan Gao;Chen‐Yang Liu;Hui‐Dong Zheng;Li‐Hai Fan;Li Deng
通讯作者:Li Deng
Metabolically Engineered Escherichia coli for Conversion of D-Fructose to D-Allulose via Phosphorylation-Dephosphorylation.
代谢设计的大肠杆菌通过磷酸化 - 脱磷酸化将D-果糖转化为D-果糖。
DOI:10.3389/fbioe.2022.947469
发表时间:2022
期刊:FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY
影响因子:5.7
作者:Guo, Qiang;Liu, Chen-Yang;Zheng, Ling-Jie;Zheng, Shang-He;Zhang, Ya-Xing;Zhao, Su-Ying;Zheng, Hui-Dong;Fan, Li-Hai;Lin, Xiao-Cheng
通讯作者:Lin, Xiao-Cheng
控流限域效应驱动大肠杆菌高效合成D-阿洛糖的研究
- 批准号:--
- 项目类别:面上项目
- 资助金额:54万元
- 批准年份:2022
- 负责人:范立海
- 依托单位:
大肠杆菌借助SecY蛋白转位通道非特异性跨内膜运输糖的研究
- 批准号:21776010
- 项目类别:面上项目
- 资助金额:64.0万元
- 批准年份:2017
- 负责人:范立海
- 依托单位:
国内基金
海外基金















{{item.name}}会员


