代谢影像组学智能预测肺癌靶向耐药的关键技术与应用
结题报告
批准号:
81830052
项目类别:
重点项目
资助金额:
294.0 万元
负责人:
黄钢
依托单位:
学科分类:
影像医学/核医学
结题年份:
2023
批准年份:
2018
项目状态:
已结题
项目参与者:
黄钢
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
分子靶向治疗已成为肺癌临床标准治疗的重要内容,但及时、无创、便捷、精准地预测靶向药物疗效是亟需解决的关键问题。细胞代谢异常作为肿瘤高特征性标志,是靶向药物疗效评价的有效指证。以多模态代谢影像为核心并包括代谢组学、代谢酶相关蛋白组学、转录组学等多维组学数据,不仅涵盖了从宏观到微观、从表型到机理的完整信息,而且以代谢为纽带形成紧密的逻辑链,成为靶向药物评价的关键切入点。为此,本课题组提出“定量代谢影像及代谢组学等多维数据关联互动式深度学习,人工智能评价肿瘤表型和预测靶向干预效果模型”。拟首先通过建立肺癌靶向药物干预动物模型,获取肺癌靶向耐药相关代谢数据;其次,基于自编码器模型和深度迁移学习框架,研究基于代谢影像组学数据互动的特征提取和分析方法、高通量数据比对与并行算法等关键技术;最后通过多中心、大样本临床研究验证肺癌靶向耐药智能预测模型及其临床价值,以期提高肺癌靶向药物评价的精准性和预测性。
英文摘要
Targeted therapy has become an essential part of the clinical treatment of lung cancer. Namely, non-invasive, convenient and accurate prediction of the efficacy of targeted drugs is an important clinical issues. Dysregulation of cell metabolism, as a hallmark of cancer, is an effective method of assessing the efficacy of targeted drugs. Albeit composed of multimodal metabolic imaging and metabolic enzyme-related proteomics, transcriptomics and other omics, the complex metabolic data, indicates several clinical pathways from macro to micro, from phenotype to mechanism, and the response chain through metabolism. Thanks to recent advances in assessment of metabolism-dependent drug efficacy, a deep learning technique is proposed and validated to predict the effect of targeted drugs, in terms of quantitative metabolic imaging, metabolomics and other omics. First, a multidimensional metabolic data set is constructed upon a lung cancer model. Then, several machine learning techniques including feature extraction, alignment and selection are studied using the autoencoder and transfer learning neural network. Finally, a multicentre, large-sample clinical study is conducted to validate the predictive model of lung cancer-targeted drugs. We envision the outcome of the underlying pioneer study as an emerging tool in assessment of lung cancer-targeted drugs.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1007/s41365-021-00886-y
发表时间:2021-05
期刊:Nuclear Science and Techniques
影响因子:2.8
作者:Zhong-Hang Wu;Juju Bai;Di-Da Zhang;Gang Huang;Tian-Bao Zhu;Xi-Jiang Chang;Ren-Duo Liu;Jun Lin;Jiu-Ai Sun
通讯作者:Zhong-Hang Wu;Juju Bai;Di-Da Zhang;Gang Huang;Tian-Bao Zhu;Xi-Jiang Chang;Ren-Duo Liu;Jun Lin;Jiu-Ai Sun
Automated fibroglandular tissue segmentation in breast MRI using generative adversarial networks
使用生成对抗网络在乳腺 MRI 中自动进行纤维腺体组织分割
DOI:10.1088/1361-6560/ab7e7f
发表时间:2020-05-21
期刊:PHYSICS IN MEDICINE AND BIOLOGY
影响因子:3.5
作者:Ma, Xiangyuan;Wang, Jinlong;Lu, Yao
通讯作者:Lu, Yao
DOI:10.3233/xst-221218
发表时间:2022-01-01
期刊:JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY
影响因子:3
作者:Hu, Ying;Yang, Yifeng;Nie, Shengdong
通讯作者:Nie, Shengdong
DOI:10.3892/ol.2021.12661
发表时间:2021-05
期刊:Oncology letters
影响因子:2.9
作者:Wang C;Wang L;Liang B;Zhou B;Sun Y;Meng Y;Dong J;Chen L;Li B
通讯作者:Li B
DOI:10.1016/j.ejphar.2021.173896
发表时间:2021-01
期刊:European journal of pharmacology
影响因子:5
作者:Xu Wang;Yun Chen;Jingyu Zhu;Zhaoqi Yang;Xiaohai Gong;Renjie Hui;Gang Huang;Jian Jin
通讯作者:Xu Wang;Yun Chen;Jingyu Zhu;Zhaoqi Yang;Xiaohai Gong;Renjie Hui;Gang Huang;Jian Jin
整环SPECT/能谱CT一体化分子影像仪的研发
  • 批准号:
    82127807
  • 项目类别:
    国家重大科研仪器研制项目
  • 资助金额:
    858万元
  • 批准年份:
    2021
  • 负责人:
    黄钢
  • 依托单位:
国内基金
海外基金