分数量子霍尔态及其赝势哈密顿量的研究

批准号:
12004105
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
陈立
依托单位:
学科分类:
强关联体系
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
陈立
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
分数量子霍尔效应的有效哈密顿量只包含电子相互作用项,为研究强关联电子体系提供了一个重要的平台。另一方面,基于分数量子霍尔效应的拓扑量子计算具有高度的容错性,引起了实验和理论物理学家的极大关注。申请人将使用算符代数方法,在二次量子化框架下研究填充数为1/2的p波配对Pfaffian分数量子霍尔态及其赝势哈密顿量。申请人将通过构造Pfaffian态的二次量子化迭代公式和研究此赝势哈密顿量的所有零能量基态,来揭示配对在分数量子霍尔效应中起到的作用。算符代数方法避免了数值方法中的有限粒子数效应,可以提供全新的思路,并且和坐标表象中研究一次量子化波函数的方法互补。申请人还将把Pfaffian态的赝势哈密顿量投影到特定的朗道能级来构造新的赝势哈密顿量,在理论上寻找新的拓扑量子霍尔态。预期此研究除了揭示配对在分数量子霍尔效应中起到的作用外,还会对研究更一般的配对态乃至发现新的拓扑量子态起到启发作用。
英文摘要
The effective Hamiltonian for the fractional quantum Hall effect only involves the interaction term between electrons, thus providing an important platform for studying strongly correlated electron systems. On the other hand, topological quantum computation based on fractional quantum Hall effect has greatly intrigued both experimentalists and theorists, for it possesses high fault tolerance. In this project, the applicant will study ν=1/2 p-wave paired Pfaffian fractional quantum Hall state and its pseudopotential Hamiltonian with the method of operator algebra in the framework of second quantization. The applicant seeks to reveal the role that pairing plays in the fractional quantum Hall effect by constructing second-quantized recursive formula for the Pfaffian state and studying all the zero energy ground states of this pseudopotential Hamiltonian. The method of operator algebra is not susceptible to finite particle number effect of the numerical method, can provide new ideas to the field and complement the method of studying first-quantized wave function and pseudopotential in the coordinate representation. The applicant will also project the pseudopotential Hamiltonian for the Pfaffian state to certain Landau levels to construct new pseudopotential Hamiltonians and will look for new topological quantum Hall states from a theoretical perspective. It is expected that this research will shed new light on studying general paired states and discovering new topological quantum states besides revealing the important role that pairing plays in the fractional quantum Hall effect.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
From frustration-free parent Hamiltonians to off-diagonal long-range order: Moore-Read and related states in second quantization
从无挫败的父哈密顿量到非对角长程有序:摩尔-里德和第二量子化中的相关状态
DOI:10.1103/physrevb.108.075142
发表时间:2023
期刊:Physical Review B
影响因子:3.7
作者:Zhang, Fanmao;Schossler, Matheus;Seidel, Alexander;Chen, Li
通讯作者:Chen, Li
DOI:10.1103/PhysRevB.109.085106
发表时间:2024
期刊:PHYSICAL REVIEW B
影响因子:3.7
作者:Matheus Schossler;Li Chen;Alexander Seidel
通讯作者:Alexander Seidel
共形场论构造的分数量子霍尔态的性质研究
- 批准号:--
- 项目类别:专项基金项目
- 资助金额:4万元
- 批准年份:2019
- 负责人:陈立
- 依托单位:
国内基金
海外基金
