课题基金基金详情
高速列车小幅蛇行演变机理及预测方法研究
结题报告
批准号:
51975486
项目类别:
面上项目
资助金额:
60.0 万元
负责人:
宁静
依托单位:
学科分类:
机械动力学
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
宁静
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
蛇行运动是列车实现高速运行的一大障碍。现有蛇行监测系统都是在大幅蛇行已充分显现时才能识别并报警,且往往仅借助一个观测量来进行判断,其系统的实时性和准确性有待进一步提高。随着高速列车的运行速度不断提高,在大幅蛇行异常现象充分显现之前,利用多表征量对蛇行运动演变趋势进行预测是建立准确、快速的蛇行异常预警系统的有效途径。本项目将理论仿真和台架试验以及机器学习等方法相结合,对高速列车小幅蛇行演变机理及预测方法进行研究。通过建立高速列车整车数学模型和动力学模型,探索高速列车小幅蛇行运动的演变规律;利用机车车辆整车滚动振动试验台,模拟高速列车小幅蛇行演变的过程,揭示高速列车各关键表征参数对小幅蛇行演变趋势的影响规律;利用机器学习,建立基于多个表征参数融合的小幅蛇行演变趋势的预测方法。相关研究有助于丰富蛇行失稳监测的相关理论,为建立高速列车蛇行预警系统提供重要的理论支撑。
英文摘要
Hunting is a serious obstacle to the high-speed operation of trains. All the monitoring systems are designed to detect hunting only after hunting has developed sufficiently. Besides in most cases, the recognition result is obtained by only one observation. As a result, the accuracy and real-time performance of the monitoring system need to be further improved. With the increasing speed of high-speed trains, it is an effective way to establish an accurate and fast warning system for hunting by predicting evolution trend of small amplitude hunting through multi-characterizations before the hunting phenomenon has developed sufficiently. This project combines theoretical simulation, bench test and machine learning to study the evolution mechanism and prediction method of small amplitude hunting of high-speed trains. The evolution law of small amplitude hunting of high-speed trains will be explored by establishing mathematical models and dynamic models of high-speed trains. By using the roller testing rig of railway vehicles, the evolution process of small amplitude hunting of high-speed trains will be simulated to reveal the coupling law between the key characterization parameters of high-speed trains and the evolution trend of small amplitude hunting. On this basis, a prediction method of small amplitude hunting evolution based on multiple characterization parameters will be developed by machine learning theory. Relevant research is helpful to enrich the theory of hunting instability monitoring and will provide important theoretical support for an accurate and fast hunting warning system of high-speed trains.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:--
发表时间:2022
期刊:计算机与数字工程
影响因子:--
作者:王靖铭;宁静;赵飞;陈春俊
通讯作者:陈春俊
DOI:--
发表时间:2021
期刊:中国测试
影响因子:--
作者:赵飞;宁静;方明宽;陈春俊
通讯作者:陈春俊
DOI:10.1109/tim.2023.3287261
发表时间:2023
期刊:IEEE Transactions on Instrumentation and Measurement
影响因子:5.6
作者:Jing Ning;Mingkuan Fang;Duoying Wang;Chunjun Chen;H. Ouyang
通讯作者:Jing Ning;Mingkuan Fang;Duoying Wang;Chunjun Chen;H. Ouyang
DOI:--
发表时间:2023
期刊:计算机测量与控制
影响因子:--
作者:王敏;宁静;赵飞;李艳萍;陈春俊
通讯作者:陈春俊
DOI:10.16731/j.cnki.1671-3133.2022.01.014
发表时间:2022
期刊:现代制造工程
影响因子:--
作者:赵飞;宁静;李艳萍;陈春俊
通讯作者:陈春俊
国内基金
海外基金