课题基金基金详情
基于多模态磁共振成像的黑质体-1结构、铁与神经黑色素含量的量化评估结合多模态深度学习网络在帕金森病诊断中的研究
结题报告
批准号:
81971576
项目类别:
面上项目
资助金额:
55.0 万元
负责人:
严福华
依托单位:
学科分类:
磁共振成像
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
严福华
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
帕金森病(PD)是神经变性疾病,黑质内多巴胺能神经元退变、铁沉积增加、神经黑色素(NM)减少是重要的病理改变,其中黑质体-1(N1)受累最早、程度最重。N1铁含量增加导致MR图像上“燕尾征”消失现象对PD诊断有较高敏感性和特异性,但文献和申请人前期研究显示,N1的显示和MR序列选择、图像分辨率、信噪比及判读标准有密切关系。因此,基于“燕尾征”消失作为PD诊断标志物这一假说,申请人采用新的多模态MR序列STAGE开展志愿者预实验,在基于高分辨率幅度图和定量磁化率成像(QSM)的tSWI上能清晰显示NI,测得稳定的磁化率值。本项目拟在优化扫描的基础上,制定判读标准,创建形态学模板,设计多任务、模态注意力机制和深度学习网络对N1进行“分割-识别”,将N1结构、黑质内铁沉积及NM退变影像组学特征和深度学习网络高通量特征有机融合,建立基于影像标记物的PD诊断模型,为临床诊断提供快速易用的工具。
英文摘要
Parkinson's disease (PD) is a neurodegenerative disease. The main pathological changes of PD include dopaminergic neuron degeneration, iron deposition increase and neuromelanin (NM) reduction. Among them, substantia nigra-1 (N1) is the earliest and most severely affected substantia nigra structure. The phenomenon of disappearance of the "Swallowtail sign" on MR images due to the increase of N1 iron content has higher sensitivity and specificity for PD diagnosis. However, our and others previous studies have shown that the illustration of N1 is highly related to the selection of MRI sequences, image resolution, signal-to-noise ratio and interpretation criteria. Therefore, based on the hypothesis that the "Swallowtail sign" disappears as a PD diagnostic marker, our preliminary study on volunteers using a new multi-model MR sequence STAGE has showed that tSWI based on high-resolution phase images and quantitative susceptibility mapping can clearly show N1 and measure stable susceptibility values. Based on the optimal scan protocol, this project intends to formulate N1 structure interpretation criteria and create a N1 atlas. In addition, we are going to design multi-tasks and multi-models attention mechanism and deep learning network for the “segmentation and recognition” of N1 structure, and organically combine the radiomics features of N1 structure, iron deposition in substantia nigra and NM degeneration with the high-throughput characteristics of the deep learning network. Our ultimate goal is to establish diagnostic model of PD patients based on image markers and provide a quick and easy quantitative tool for clinical diagnosis of PD.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1002/hbm.26178
发表时间:2023-03
期刊:HUMAN BRAIN MAPPING
影响因子:4.8
作者:Zhang, Youmin;Huang, Pei;Wang, Xinhui;Xu, Qiuyun;Liu, Yu;Jin, Zhijia;Li, Yan;Cheng, Zenghui;Tang, Rongbiao;Chen, Shengdi;He, Naying;Yan, Fuhua;Haacke, E. Mark
通讯作者:Haacke, E. Mark
DOI:10.1002/hbm.26399
发表时间:2023-08-15
期刊:HUMAN BRAIN MAPPING
影响因子:4.8
作者:Wang, Yida;He, Naying;Zhang, Chunyan;Zhang, Youmin;Wang, Chenglong;Huang, Pei;Jin, Zhijia;Li, Yan;Cheng, Zenghui;Liu, Yu;Wang, Xinhui;Chen, Chen;Cheng, Jingliang;Liu, Fangtao;Haacke, Ewart Mark;Chen, Shengdi;Yang, Guang;Yan, Fuhua
通讯作者:Yan, Fuhua
Increased iron-deposition in lateral-ventral substantia nigra pars compacta: A promising neuroimaging marker for Parkinson's disease
侧腹黑质致密部铁沉积增加:帕金森病的一个有前景的神经影像标记物
DOI:10.1016/j.nicl.2020.102391
发表时间:2020-01-01
期刊:NEUROIMAGE-CLINICAL
影响因子:4.2
作者:He, Naying;Langley, Jason;Hu, Xiaoping
通讯作者:Hu, Xiaoping
DOI:10.1002/hbm.25770
发表时间:2022-04-15
期刊:Human brain mapping
影响因子:4.8
作者:Jin Z;Wang Y;Jokar M;Li Y;Cheng Z;Liu Y;Tang R;Shi X;Zhang Y;Min J;Liu F;He N;Yan F;Haacke EM
通讯作者:Haacke EM
DOI:10.1016/j.neuroimage.2020.116935
发表时间:2020-09-01
期刊:NEUROIMAGE
影响因子:5.7
作者:Liu, Yu;Li, Junchen;Haacke, E. Mark
通讯作者:Haacke, E. Mark
基于LC-NE系统多模态MRI结合机器学习模型在PD认知障碍中的纵向研究
  • 批准号:
    82271954
  • 项目类别:
    面上项目
  • 资助金额:
    52万元
  • 批准年份:
    2022
  • 负责人:
    严福华
  • 依托单位:
基于磁敏感性加权成像的胰腺铁沉积定量测定与β细胞功能评价的实验研究
  • 批准号:
    81671649
  • 项目类别:
    面上项目
  • 资助金额:
    56.0万元
  • 批准年份:
    2016
  • 负责人:
    严福华
  • 依托单位:
基于MR微血管成像技术在体研究肝纤维化发展过程中血管生成的作用
  • 批准号:
    81371520
  • 项目类别:
    面上项目
  • 资助金额:
    70.0万元
  • 批准年份:
    2013
  • 负责人:
    严福华
  • 依托单位:
国内基金
海外基金