基于DFT结合机器学习的铁基费托反应网络研究

批准号:
22002008
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
何育荣
依托单位:
学科分类:
基础理论与表征方法
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
何育荣
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
费托合成(FTS)作为保障能源战略安全的关键技术而备受关注。但其反应机理和控制催化剂性能的关键结构因素尚未明晰,严重制约着新催化剂的开发。本项目首先通过密度泛函理论计算系统研究铁基催化剂各种物相(Fe、Fe5C2、Fe3C)涉及的多种基元反应(CO活化、CO加氢、表面C物种加氢、C-C偶联),通过深入分析表面几何和电子结构特征,阐明FTS基元反应与表面结构之间的构效关系。然后利用DFT计算得到的数据组成训练集获得机器学习势函数,快速计算更多物种能量。通过各类型基元反应的动力学-热力学关联(类BEP关系)和构效关系预测同类型基元反应活化能,加速基元反应的研究。最终,我们结合DFT计算和机器学习构建铁基费托反应网络,通过动力学分析找出产物选择性的控制步骤。分析影响控制步骤的关键结构因素,进而找到催化剂活性和选择性调控方法,指导催化剂理性高效设计。
英文摘要
Fischer-Tropsch Synthesis (FTS) has attracted much attention since it is the key technology that converts coal into clean liquid fuels, thus strategically ensuring the fuel supply for our country. However, the lack of understanding on reaction mechanism and the structural factors affecting the catalytic performance has restricted the design of new catalysts. In this project, we will systematically study all kinds of FTS elementary reactions, including CO activation, CO hydrogenation, surface C species hydrogenation, and C-C coupling, on various iron-based phases (Fe, Fe5C2, Fe3C) through Density Functional Theory (DFT) calculations. By analyzing the surface geometrical and electronic structures, we will explore the structure-activity relationship between the reaction properties and the surface structures. Further, a machine learning potential can be generated by training the data from DFT calculations, which will be used to speedily calculate the energy of the new intermediate species. The activation energies of more FTS elementary reactions can be predicted by the relations between kinetic and thermodynamic properties, like BEP relationship, or relations between structure and activity. Thus, the calculations for reactions are accelerated by avoiding the expensive transition state searching. In this way, combining DFT calculation and machine learning, we can construct the iron-based FTS reaction network and find the selectivity control steps of the main products with kinetics analysis. The pivotal structural and electronic properties affecting the key reactions will be intensively studied. Based on the results, we will propose the methods for modulating the catalytic activity and product selectivity. The results of this project will provide guidance for the efficient and rational design of new iron-based FTS catalysts.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
A Recyclable CoGa Intermetallic Compound Catalyst for the Hydroformylation Reaction
用于加氢甲酰化反应的可回收 CoGa 金属间化合物催化剂
DOI:10.1016/j.jcat.2021.09.031
发表时间:2021-10
期刊:Journal of Catalysis
影响因子:7.3
作者:Jiaojiao Zhao;Yurong He;Fei Wang;Yusen Yang;Wentao Zheng;Chunfang Huo;Haijun Jiao;Yong Yang;Yongwang Li;Xiaodong Wen
通讯作者:Xiaodong Wen
The application of DFT calculation in the study of iron-based catalyst for Fischer-Tropsch synthesis
DOI:10.1016/s1872-5813(23)60366-4
发表时间:2023-11
期刊:Journal of Fuel Chemistry and Technology
影响因子:--
作者:Fu-gui He;Tong Zhang;Jie Liang;Hai-peng Li;Yu-rong He;Xinhua Gao;Jian-li Zhang;Tian-Sheng Zhao-Tian
通讯作者:Fu-gui He;Tong Zhang;Jie Liang;Hai-peng Li;Yu-rong He;Xinhua Gao;Jian-li Zhang;Tian-Sheng Zhao-Tian
A simple denoising approach to exploit multi-fidelity data for machine learning materials properties
DOI:10.1038/s41524-022-00925-1
发表时间:2022-04
期刊:npj Computational Materials
影响因子:9.7
作者:Xiaotong Liu;Pierre-Paul De Breuck;Linghui Wang;G. Rignanese
通讯作者:Xiaotong Liu;Pierre-Paul De Breuck;Linghui Wang;G. Rignanese
DOI:10.1080/00986445.2022.2135505
发表时间:2022-10
期刊:Chemical Engineering Communications
影响因子:2.5
作者:Yongning Yuan;Liyue Qi;Tuo Guo;Xiu-de Hu;Yurong He;Qingjie Guo
通讯作者:Yongning Yuan;Liyue Qi;Tuo Guo;Xiu-de Hu;Yurong He;Qingjie Guo
DOI:10.1016/j.apcatb.2023.122449
发表时间:2023-02
期刊:Applied Catalysis B: Environmental
影响因子:--
作者:Zhenzhou Zhang;Bao-Hui Chen;Lingyu Jia;Wenqi Liu;Xinhua Gao;Jian Gao;Bo Meng;Yisheng Tan;
通讯作者:Zhenzhou Zhang;Bao-Hui Chen;Lingyu Jia;Wenqi Liu;Xinhua Gao;Jian Gao;Bo Meng;Yisheng Tan;
国内基金
海外基金
