课题基金基金详情
仿生制造复合超滑液膜表面用于冷凝相变传热的机理研究
结题报告
批准号:
52005128
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
郝崇磊
依托单位:
学科分类:
机械仿生学与生物制造
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
郝崇磊
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
冷凝是自然界中常见的相变现象,并且由于其工业应用(例如热管理、发电和化工)而受广泛关注。随着仿生和微纳加工技术的进展,使得能够在相变传热方面加强对表面结构的控制,以改善冷凝液滴的成核,生长和脱离。受猪笼草启发,本项目围绕冷凝表面成核密度低、液滴脱离速度慢等问题,开发一种新型仿生超滑液膜表面(SLIPS),有望为进一步提高性能提供一种思路。与以往的材料(例如超疏水表面或平面SLIPS)不同,此设计使用复合结构来创建具有高度规则结构的液体界面。通过理论分析,仿真和实验表征,本课题将重点研究此表面设计的冷凝现象,阐明该表面上冷凝液滴脱离机理,揭示表面结构和液膜性能与传热效率的影响规律,并探讨凝结过程中润滑液膜的长期稳定性。本课题的实施将为微纳复合液-液界面的冷凝传热提供理论依据和技术支撑,有望在发电散热和空调等应用上带来新的解决方案,具有重要的科学意义和实际应用价值。
英文摘要
Condensation is a phase change phenomenon often occurring in nature and has received growing attention due to its industrial applications such as thermal management, power generation, and chemical engineering. Recent advancements in biomimetics and micro/nanofabrication methods have enabled increased control of surface structuring in the topic of phase change heat transfer to improve condensate droplets nucleation, growth and departure. To address problems such as low condensate nucleation density and slow detaching velocity, inspired by pitcher plant in nature, this project aims to develop a new slippery liquid infused porous surface (SLIPS), which is promising to provide alternative approach for further performance enhancement. Different from previous materials such as superhydrophobic surfaces or flat SLIPS, this design use composite structures to create liquid interface that has well-defined micro-textures. By theoretical analysis, simulation and experimental characterization, condensation phenomenon on this proposed surface design will be investigated, and the effect of both surface structure and lubricant properties on heat transfer efficiency will be elucidated. Moreover, the mechanism for condensate departure on this novel design will also be examined. The long-term stability of lubricant during condensation will be explored. The implementation of this project will provide a theoretical basis for condensation heat transfer on bio-inspired micro/nano hybrid liquid-liquid interface and bring new solutions for applications such as power generation cooling and air conditioning system in practice.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.xcrp.2021.100721
发表时间:2022-01
期刊:Cell Reports Physical Science
影响因子:8.9
作者:Ran Tao;Guoqiang Liang;Binhong Dou;Jun Wu;Bing Li;Chonglei Hao
通讯作者:Ran Tao;Guoqiang Liang;Binhong Dou;Jun Wu;Bing Li;Chonglei Hao
DOI:10.1038/s41467-023-39348-x
发表时间:2023-06-14
期刊:NATURE COMMUNICATIONS
影响因子:16.6
作者:Dai, Yuhang;Li, Minfei;Ji, Bingqiang;Wang, Xiong;Yang, Siyan;Yu, Peng;Wang, Steven;Hao, Chonglei;Wang, Zuankai
通讯作者:Wang, Zuankai
DOI:10.34133/research.0023
发表时间:2023
期刊:Research (Washington, D.C.)
影响因子:--
作者:Tao R;Fang W;Wu J;Dou B;Xu W;Zheng Z;Li B;Wang Z;Feng X;Hao C
通讯作者:Hao C
DOI:10.1063/5.0059420
发表时间:2021-07
期刊:Applied Physics Letters
影响因子:4
作者:Zhaoyi Wang;R. Tao;Jun Wu;Bing Li;Chonglei Hao
通讯作者:Zhaoyi Wang;R. Tao;Jun Wu;Bing Li;Chonglei Hao
电场增强的仿生超滑液膜表面雾水收集机理研究
  • 批准号:
    52375175
  • 项目类别:
    面上项目
  • 资助金额:
    50万元
  • 批准年份:
    2023
  • 负责人:
    郝崇磊
  • 依托单位:
国内基金
海外基金