产溶剂梭菌兼养发酵转化富CO炼钢尾气产乙醇的碳代谢流调控机制研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    21908144
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    25.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    B0816.资源、环境与生态化工
  • 结题年份:
    2022
  • 批准年份:
    2019
  • 项目状态:
    已结题
  • 起止时间:
    2020-01-01 至2022-12-31

项目摘要

Steel mill waste gas is rich of carbon monoxide (CO), which is considered as an air pollutant and a low-value resource. CO can be utilized as carbon and energy source by solventogenic Clostridia and metabolically converted to produce ethanol via the Wood-Ljungdahl Pathway (WLP) in autotrophy. Such a CO-to-ethanol biological process is characterized as being highly efficient, low-carbon-emission and environmentally friendly, which can be potentially applied for valorization of steel mill waste gas. However, ethanol productivity is still too low by this technology, which is significantly limited by gas-to-liquid mass transfer efficiency and low net ATP yield with WLP metabolism. To overcome the above key bottlenecks, this proposed research aims to develop a high-ATP-yield “mixtrophy” fermentation process coupling WLP with EMP glycolysis, so that the ethanol production can be enhanced. The most commonly reported solventogenic clostridia, Clostridium ljungdahlii will be employed as the microbial host to convert CO for ethanol production. First, we will investigate the effect of gas-to-liquid mass transfer on CO-derived ethanol production in such a mixtrophy, in order to determine the threshold of mass-transfer-limited regime. Second, based on the threshold point, we will explore the mixtrophy fermentation using physiological, metabolomics, transcriptomics and proteomics approaches for C. ljungdahlii steady-state chemostat cultures grown on fructose and synthetic steel mill waste gas (CO/CO2) under various gas-liquid mass transfer conditions, in order to elucidate the regulatory mechanism. Furthermore, based on the “omics” results and sequencing information, a genome-scale metabolic model (GEM) will be developed. Third, by developing 13C isotopically nonstationary metabolic flux analysis (INST-MFA) method, we will characterize the carbon flux and curate the GEM. By adopting such a systems-level comprehensive approach, we will determine the key metabolic pathway for ethanol production in C. ljungdahlii mixtrophy and will decipher the regulatory mechanism. Overall, the proposed research will advance our fundamental understanding of solventogenic Clostridia mixtrophy for enhanced ethanol production. Ultimately, this study will contributes to minimize pollution caused by steel mill waste gases, to promote valorization of the low-value CO-rich waste gases and to advance the “non-food feedstock-derived” bioethanol economy.
炼钢尾气富含一氧化碳CO,具有污染源和资源双重属性。利用产溶剂梭菌自养代谢转化其中CO生成燃料乙醇,是一种高效、环境友好的尾气资源化途径。然而,受气液传质及代谢ATP产量过低的限制,该技术的乙醇产率仍较低。为突破瓶颈,本项目拟通过自养代谢耦合糖酵解途径,构建高ATP产出的兼养发酵体系以转化富CO炼钢尾气,明晰其代谢特征及调控机制,从而提高乙醇产量。选用扬氏梭菌为细胞工厂,首先研究兼养发酵体系中传质对CO合成乙醇的影响,确定传质限制的阈值;根据阈值,采用多组学手段揭示不同传质条件下的细胞代谢规律;最后,建立非稳态代谢通量分析方法解析碳代谢流特征,构建基因组尺度代谢网络模型,明确兼养发酵体系中乙醇合成的关键代谢通路,揭示其调控机制,为高效生物转化CO制乙醇提供理论依据。此研究对钢铁工业尾气的污染控制、低值资源CO的有效利用、以及我国“非粮食”生物燃料乙醇产业的发展具有重要的科学意义和应用价值。

结项摘要

产溶剂梭菌的非光合厌氧固碳产乙醇是极具潜力的二氧化碳资源化生物技术,但受Wood-Ljungdahl途径(WLP)的ATP产能限制,乙醇产率偏低。本课题选用扬氏梭菌C. ljungdahlii为模式微生物,采用兼养发酵策略突破ATP限制,首先比选了不同有机碳源和还原力作用对扬氏梭菌兼养发酵过程的细胞生长、底物利用、碳回收效率、能量分配和代谢产物分布影响,发现果糖为最佳有机碳源,且H2补充和硝酸盐呼吸耦合作用对乙醇产率均有明显提高。发展了基于13C标记果糖底物平行示踪的13C-MFA分析方法,构建了扬氏梭菌在同步代谢果糖+CO2/H2条件下的代谢网络模型,结果表明有72.4%的乙酰辅酶A(中心代谢的重要中间代谢产物)碳通量仍由固定CO2的WLP合成,明确了兼养发酵过程中固碳途径的定量贡献;此外,基于该代谢模型的能量平衡计算结果显示,兼养发酵模式下果糖的糖酵解途径也为体系提供了足量的还原力和氧化还原辅因子,体系中的ATP、NADH和还原性铁氧还蛋白分别提高了28%、28%和25%。然后,在CSTR反应器中进行了为期190天的连续发酵,通过对比不同气液传质条件下扬氏梭菌在兼养和自养模式下的产乙醇效能,确定了兼养发酵固定CO2的气体传质限制阈值并解析了碳代谢特征,结果表明在高传质条件下,乙醇主要通过乙醛:铁氧还蛋白氧化还原酶(AOR)的作用还原乙酸来产生,进一步阐明了兼养发酵模式下气液传质对合成乙醇代谢通路的调控机制。最后,探究了实际工业尾气固碳转化过程中常见的氧胁迫对扬氏梭菌在自养和兼养发酵模式下的代谢响应,发现了微氧环境(顶空5-10% O2)对产乙醇的促进作用(57%),且兼养环境中扬氏梭菌的细胞密度更高,这意味着更高的氧气耐受度和代谢韧性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of sludge organic matter on elimination of polycyclic aromatic hydrocarbons (PAHs) from waste activated sludge by ozonation: Controversy over aromatic compounds.
污泥有机质对臭氧化废活性污泥中多环芳烃(PAH)的影响:芳香族化合物的争议。
  • DOI:
    10.1016/j.scitotenv.2021.149232
  • 发表时间:
    2021-07
  • 期刊:
    Science of the Total Environment
  • 影响因子:
    9.8
  • 作者:
    Li Wenhao;Zhu Nanwen;Yuan Haiping;Shen Yanwen
  • 通讯作者:
    Shen Yanwen
Towards efficient elimination of polycyclic aromatic hydrocarbons (PAHs) from waste activated sludge by ozonation
通过臭氧化有效消除废活性污泥中的多环芳烃 (PAH)
  • DOI:
    10.1016/j.envres.2021.110783
  • 发表时间:
    2021-01-01
  • 期刊:
    Environ. Res
  • 影响因子:
    --
  • 作者:
    Li, W.;Zhu, N.;Yuan, H.
  • 通讯作者:
    Yuan, H.
Anaerobic ammonium oxidation (anammox) promoted by pyrogenic biochar: Deciphering the interaction with extracellular polymeric substances (EPS)
热解生物炭促进厌氧氨氧化(anammox):破译与细胞外聚合物(EPS)的相互作用
  • DOI:
    10.1016/j.scitotenv.2021.149884
  • 发表时间:
    2022
  • 期刊:
    Science of the Total Environment
  • 影响因子:
    9.8
  • 作者:
    Xu Jiajia;Li Chao;Shen Yanwen;Zhu Nanwen
  • 通讯作者:
    Zhu Nanwen
The extent of sludge solubilization allows to estimate the efficacy of ozonation for removal of polycyclic aromatic hydrocarbons (PAHs) in municipal sewage sludge
污泥溶解的程度可以评估臭氧化去除城市污水污泥中多环芳烃 (PAH) 的效果。
  • DOI:
    10.1016/j.jhazmat.2021.125404
  • 发表时间:
    2021-02-17
  • 期刊:
    JOURNAL OF HAZARDOUS MATERIALS
  • 影响因子:
    13.6
  • 作者:
    Li, Wenhao;Li, Chao;Shen, Yanwen
  • 通讯作者:
    Shen, Yanwen
Anammox process dosed with biochars for enhanced nitrogen removal: Role of surface functional groups
厌氧氨氧化工艺中添加生物炭以增强脱氮:表面官能团的作用
  • DOI:
    10.1016/j.scitotenv.2020.141367
  • 发表时间:
    2020
  • 期刊:
    Science of the Total Environment
  • 影响因子:
    9.8
  • 作者:
    Xu Jiajia;Wu Xiaohui;Zhu Nanwen;Shen Yanwen;Yuan Haiping
  • 通讯作者:
    Yuan Haiping

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

沈雁文的其他基金

硝酸盐呼吸促进食气梭菌固碳产乙醇的能量代谢调控及机制解析
  • 批准号:
    22278266
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码