可压缩磁流体力学方程组的可解性及其应用

批准号:
12001003
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
李扬
依托单位:
学科分类:
混合型、退化型偏微分方程
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
李扬
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
磁流体力学是研究导电流体和磁场相互作用及变化规律的学科,在天体物理,热核反应与工业等领域中有诸多应用。本项目拟围绕以下几个方面开展: (1) 利用混合型有限元-有限体积数值方法构造三维等熵可压缩磁流体力学方程组的测度值解,建立相对能量不等式并研究弱强唯一性,即只要测度值解与光滑解由同一光滑初始值决定,则在光滑解的生命跨度内两者恒同; (2) 基于相对能量不等式和色散估计,在测度值解的框架下研究磁流体力学方程组相关的奇异极限问题,如粘性消失极限、低马赫数极限、磁扩散消失极限; (3) 考虑水平方向运动而磁场仅在垂直方向作用的可压缩磁流体模型,利用经典的Lions-Feireisl方法与可压缩两相流中“变量约化”的新技术研究其弱解的整体存在性。本项目拟在数学上严格证明磁场在磁流体运动中所起的稳定性作用,并对相应的物理现象有更好的认识。
英文摘要
Magnetohydrodynamics (MHD) is concerned with the time evolution and mutual interactions between electrically conducting fluids and magnetic field. It is widely applied in astrophysics, thermonuclear reactions and industry, among others. This project is concerned with the following: (1) to construct measure-valued solutions to 3D isentropic compressible MHD system through a mixed finite element-finite volume scheme, establish the relative energy inequality and study weak-strong uniqueness principle, namely a measure-valued solution coincides with a classical one as long as the latter exists and emanate from the same initial data; (2) based on the relative energy inequality and dispersive estimates, to study singular limits in the framework of measure-valued solutions, such as vanishing viscosity limit, low Mach number limit and vanishing resistivity coefficient; (3) consider the compressible MHD model of motion in the plane and the action of magnetic field only in the vertical direction, to study existence of global-in-time weak solutions by the classical Lions-Feireisl method and the new technique of “variable reduction”.The purpose of this project is to give mathematically rigorous evidences of stabilization effect of magnetic field and reach a better understanding for corresponding physical phenomena.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1088/1361-6544/ac14a0
发表时间:2021
期刊:Nonlinearity
影响因子:1.7
作者:Sai Li;Yang Li
通讯作者:Sai Li;Yang Li
DOI:--
发表时间:2022
期刊:IMA Journal of Numerical Analysis
影响因子:--
作者:Yang Li;Bangwei She
通讯作者:Bangwei She
DOI:10.1007/s00021-022-00706-2
发表时间:2022-07
期刊:Journal of Mathematical Fluid Mechanics
影响因子:1.3
作者:Yang Li;Bangwei She
通讯作者:Yang Li;Bangwei She
DOI:10.1137/21m1431011
发表时间:2022
期刊:SIAM Journal on Numerical Analysis
影响因子:--
作者:Yang Li;Bangwei She
通讯作者:Bangwei She
DOI:10.1007/s00033-021-01630-7
发表时间:2021-10
期刊:Zeitschrift für angewandte Mathematik und Physik
影响因子:--
作者:Yang Li;Pengcheng Mu
通讯作者:Yang Li;Pengcheng Mu
国内基金
海外基金
