Evolutionary Programming and Neural Computation (Computer and Information Science)
进化规划与神经计算(计算机与信息科学)
基本信息
- 批准号:8702600
- 负责人:
- 金额:$ 12.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1987
- 资助国家:美国
- 起止时间:1987-06-15 至 1990-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of evolutionary programming is to develop systems which learn how to perform critical computing tasks through a variation and selection algorithm. The appproach taken in this research is based on the recognition that some structural organizations are well-suited to learning through evolution, while others are not. A system that achieves evolvability by simulating the structure-fashion relations that facilitate evolution in biological systems has been developed. Currently the system consists of simulated networks of dynamic neurons whose input-output behavior is controlled by membrane proteins. The variation and selection learning algorithm acts on the distribution of proteins. The organization is well-suited to evolution because improvement can always be achieved through single, reasonably likely application of the variation operator. The continuous dynamics displayed by the neurons also enhances the generalization capability of the system. The system is called a molecular design since it was inspired by biophysical and biochemical properties of neurons. However, the new efforts will be concerned with virtual implementations that would be useful in and of themselves and which could provide some insight into natural information processing. Specific objectives are: to incorporate richer nonlinear and cell automation dynamics, to add a memory manipulation capability, to implement the system as a preprocessor for high-level vision and process control tasks, and to create systems capable of long-term evolutionary improvement by applying the variation and selection operators to the dynamics.
进化编程的目标是开发学习如何通过变异和选择算法执行关键计算任务的系统。这项研究采用的方法是基于这样一种认识,即一些结构性组织非常适合通过进化进行学习,而另一些组织则不适合。一种通过模拟促进生物系统进化的结构-时尚关系来实现进化性的系统已经被开发出来。目前,该系统由模拟的动态神经元网络组成,其输入输出行为由膜蛋白控制。变异和选择学习算法作用于蛋白质的分布。组织非常适合发展,因为改进总是可以通过单一、合理地应用变化运算符来实现。神经元表现出的连续动态特性也增强了系统的泛化能力。该系统被称为分子设计,因为它的灵感来自神经元的生物物理和生化特性。然而,新的努力将关注虚拟实现,这些实现本身将是有用的,并可能为自然信息处理提供一些洞察。具体目标是:结合更丰富的非线性和细胞自动化动力学,增加记忆操作能力,将系统实现为高级视觉和过程控制任务的预处理器,并通过将变异和选择算子应用于动力学来创建能够长期进化改进的系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Conrad其他文献
Soft computing with biomolecules
- DOI:
10.1007/s005000000059 - 发表时间:
2001-02-01 - 期刊:
- 影响因子:2.500
- 作者:
Max H. Garzon;Michael Conrad - 通讯作者:
Michael Conrad
Evidence that natural selection acts on silent mutation.
自然选择作用于沉默突变的证据。
- DOI:
- 发表时间:
1983 - 期刊:
- 影响因子:0
- 作者:
Michael Conrad;Carl B. Friedlander;Morris Goodman - 通讯作者:
Morris Goodman
Foundations of Digital Archæoludology
数字考古学基础
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
C. Browne;Dennis J. N. J. Soemers;Éric Piette;Matthew Stephenson;Michael Conrad;W. Crist;T. Depaulis;Eddie Duggan;Fred Horn;S. Kelk;S. Lucas;João Pedro Neto;David Parlett;Abdallah Saffidine;Ulrich Schädler;Jorge Nuno Silva;A. Voogt;M. Winands - 通讯作者:
M. Winands
Microscopic-macroscopic interface in biological information processing.
生物信息处理中的微观-宏观界面。
- DOI:
10.1007/978-1-4613-2515-4_5 - 发表时间:
1983 - 期刊:
- 影响因子:0
- 作者:
Michael Conrad - 通讯作者:
Michael Conrad
Michael Conrad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Conrad', 18)}}的其他基金
Pattern Processing and Control with a Virtual NeuromolecularComputer Architecture
使用虚拟神经分子计算机架构进行模式处理和控制
- 批准号:
9409780 - 财政年份:1994
- 资助金额:
$ 12.85万 - 项目类别:
Continuing Grant
An Evolutionary Credit Apportionment Algorithm for Neuromolecular Computer Design
神经分子计算机设计的进化信用分配算法
- 批准号:
9109860 - 财政年份:1991
- 资助金额:
$ 12.85万 - 项目类别:
Continuing Grant
SFC Award (Indian Currency) for a Guest Scientist at the Indian Institute of Science, Bangalore - Research on Biological Computing
班加罗尔印度科学研究所客座科学家获得证监会奖(印度货币)——生物计算研究
- 批准号:
8311410 - 财政年份:1984
- 资助金额:
$ 12.85万 - 项目类别:
Standard Grant
Development of Evolutionary Programming Techniques For Adaptive Information Processes (Computer Research)
自适应信息处理的进化编程技术的发展(计算机研究)
- 批准号:
8205423 - 财政年份:1982
- 资助金额:
$ 12.85万 - 项目类别:
Continuing Grant
相似海外基金
Neural recycling and plasticity in computer programming expertise
计算机编程专业知识中的神经回收和可塑性
- 批准号:
2318685 - 财政年份:2023
- 资助金额:
$ 12.85万 - 项目类别:
Standard Grant
Developmental programming of neural circuits integrating drinking and feeding
整合饮水和进食的神经回路的发育编程
- 批准号:
10599934 - 财政年份:2022
- 资助金额:
$ 12.85万 - 项目类别:
Developmental programming of neural circuits integrating drinking and feeding
整合饮水和进食的神经回路的发育编程
- 批准号:
10463401 - 财政年份:2022
- 资助金额:
$ 12.85万 - 项目类别:
Stability Analysis and Optimal Synthesis of Recurrent Neural Networks by Conic Programming
圆锥规划循环神经网络的稳定性分析与优化综合
- 批准号:
21H01354 - 财政年份:2021
- 资助金额:
$ 12.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Semantic Genetic Programming Approach to Evolving Convolutional Neural Networks
进化卷积神经网络的语义遗传编程方法
- 批准号:
564963-2021 - 财政年份:2021
- 资助金额:
$ 12.85万 - 项目类别:
University Undergraduate Student Research Awards
RI: Small: Embracing Deep Neural Networks into Probabilistic Answer Set Programming
RI:小:将深度神经网络融入概率答案集编程
- 批准号:
2006747 - 财政年份:2020
- 资助金额:
$ 12.85万 - 项目类别:
Standard Grant
Teaching Computer Programming using Deep Recursive Neural Networks
使用深度递归神经网络教授计算机编程
- 批准号:
424460920 - 财政年份:2019
- 资助金额:
$ 12.85万 - 项目类别:
Research Fellowships
Basic research on the neural basis of computer programming learning
计算机编程学习的神经基础基础研究
- 批准号:
18K02589 - 财政年份:2018
- 资助金额:
$ 12.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The cognitive and neural mechanisms of computer programming in young children: storytelling or solving puzzles?
幼儿计算机编程的认知和神经机制:讲故事还是解决难题?
- 批准号:
1744802 - 财政年份:2017
- 资助金额:
$ 12.85万 - 项目类别:
Standard Grant
I-Corps: Approximate Dynamic Programming and Artificial Neural Network Control for Microgrids
I-Corps:微电网的近似动态规划和人工神经网络控制
- 批准号:
1744159 - 财政年份:2017
- 资助金额:
$ 12.85万 - 项目类别:
Standard Grant