Asymmetric Information Models of Law Enforcement and Regulatory Compliance

执法和监管合规的不对称信息模型

基本信息

  • 批准号:
    8710578
  • 负责人:
  • 金额:
    $ 7.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1987
  • 资助国家:
    美国
  • 起止时间:
    1987-08-01 至 1989-07-31
  • 项目状态:
    已结题

项目摘要

Economic considerations have an important influence on the outcomes of two-party bargaining situations which are subject to enforcement by law. Drs. Reiganum and Wilde seek to extend their earlier work under NSF support, which focused on the conditions that engender income tax compliance, to a variety of problems involving bargaining situations in the areas of tax compliance, plea bargaining, and regulatory compliance. They make a series of different assumptions concerning human behavior and then examine and compare the outcomes of the situations which follow from these different assumptions as well as the degree to which these outcomes can be predicted. The models they formulate to study these problems use analytic techniques from economic theory and the theory of incomplete information. The research of Drs. Reiganum and Wilde addresses several fundamental questions regarding compliance in the face of asymmetric information: To what extent does prosecutorial discretion affect bargaining between prosecutors (as agents of society) and defendants over reduced sentences in exchange for guilty pleas? How does uncertainty on the part of taxpayers affect their compliance behavior, and how does the incorporation of third-party "expert advisors" affect compliance and Internal Revenue Service auditing? How does a firm undertaking toxicity testing decide whether or not to apply to the Environmental Protection Agency (EPA) for permission to manufacture the new chemical and how, in turn, does the EPA choose to accept the firm's application or, alternatively, to conduct a costly audit of the firm's test results? The rigorous theoretical analysis of Drs. Reiganum and Wilde promises to further illuminate the causes and underlying dynamics of compliance and thus is of substantial scientific significance.
经济因素对结果有重要影响, 两方谈判的情况,这是受强制执行, 依法 Reiganum和Wilde博士试图在 NSF的支持,重点是产生所得税的条件 遵守,以各种问题,涉及讨价还价的情况下, 税务合规、辩诉交易和监管领域 合规 他们提出了一系列不同的假设, 人的行为,然后检查和比较的结果, 这些不同的假设以及 这些结果可以预测的程度。 模特们, 从经济学的角度,运用分析方法, 理论和不完全信息理论。 Reiganum和Wilde博士的研究解决了几个基本问题。 在信息不对称的情况下的遵约问题: 起诉裁量权在多大程度上影响了 检察官(作为社会代理人)和被告过度减少 用认罪来换取判决 不确定性如何 对纳税人的一部分影响他们的遵守行为,以及如何 纳入第三方“专家顾问”影响遵守 和国税局的审计 一个公司如何 毒性测试决定是否适用于环境 美国环保署(EPA)批准生产新化学品 环保署又是如何选择接受该公司的申请的 或者,对公司的测试进行昂贵的审计, 结果如何? Reiganum博士和Wilde博士严谨的理论分析 承诺进一步阐明的原因和潜在的动力, 因此,它具有重要的科学意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Reinganum其他文献

CREDIT RATIONING , BANKRUPTCY COST , AND THE OPTIMAL DEBT CONTRACT FOR SMALL BUSINESS
小企业信用配给、破产成本和最优债务契约
  • DOI:
    10.2139/ssrn.1344400
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Yan;Michael Balch;Andreas Blume;Jocelyn Evans;Jennifer Reinganum;Calvin Siebert;Steve Williamson;Joseph Haubrich
  • 通讯作者:
    Joseph Haubrich

Jennifer Reinganum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Reinganum', 18)}}的其他基金

Collaborative Research on Asymmetric Information Models of Law Enforcement and Regulatory Compliance
执法与监管合规的不对称信息模型的协作研究
  • 批准号:
    8903157
  • 财政年份:
    1989
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Continuing Grant
Dynamic Theories of Innovation and Industry Evolution
创新与产业演化的动态理论
  • 批准号:
    8216407
  • 财政年份:
    1983
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
Equilibrium Diffusion of New Technology
新技术的均衡扩散
  • 批准号:
    8025995
  • 财政年份:
    1981
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

What can AI Language Models tell us about how textual information influences understanding of environmental issues?
关于文本信息如何影响对环境问题的理解,人工智能语言模型可以告诉我们什么?
  • 批准号:
    2887340
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Studentship
Bayesian Prediction Theory and Information Geometry for Non-regular and Quantum Statistical Models
非正则和量子统计模型的贝叶斯预测理论和信息几何
  • 批准号:
    23K11006
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: Using Large Language Models to Model Threats to Sensitive Information
EAGER:使用大型语言模型对敏感信息的威胁进行建模
  • 批准号:
    2331492
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
Unifying models of information processing across machine learning, artificial intelligence and neuroscience
统一机器学习、人工智能和神经科学的信息处理模型
  • 批准号:
    EP/X011151/1
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Fellowship
Revealing mechanisms of specificity and adaptability in molecular information processing through data-driven models
通过数据驱动模型揭示分子信息处理的特异性和适应性机制
  • 批准号:
    10715575
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
Visualization of physioecological information of crop canopy on farming sites by establishing hybrid AI models.
通过建立混合人工智能模型,可视化农田作物冠层的生理生态信息。
  • 批准号:
    22H02468
  • 财政年份:
    2022
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Extensive AI-based research on models for analyzing and evaluating ESG information.
基于人工智能的广泛研究用于分析和评估 ESG 信息的模型。
  • 批准号:
    22H00897
  • 财政年份:
    2022
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: An integrative framework for decision support models including plumbing system dynamics and value of information to meet Legionella control goals
协作研究:决策支持模型的综合框架,包括管道系统动力学和信息价值,以满足军团菌控制目标
  • 批准号:
    2147070
  • 财政年份:
    2022
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
Impact of decision theoretic models in information elicitation
决策理论模型对信息获取的影响
  • 批准号:
    RGPIN-2018-04005
  • 财政年份:
    2022
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Discovery Grants Program - Individual
Large-scale general-purpose language models for information retrieval tasks
用于信息检索任务的大规模通用语言模型
  • 批准号:
    22K21303
  • 财政年份:
    2022
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了