EAGER: Using Large Language Models to Model Threats to Sensitive Information
EAGER:使用大型语言模型对敏感信息的威胁进行建模
基本信息
- 批准号:2331492
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The review process for releasing government records can be time-consuming and error prone. Large Language Models could help reviewers determine whether information is already in the public domain. By developing a prototype system and measuring performance at different stages, this project aims to estimate the additional data and training required to achieve acceptable levels of accuracy. The iterative nature of the system and the involvement of domain experts allows for measuring and minimizing “hallucination.”The project decouples the reasoning ability of Large Language Models from knowledge databases. It develops a semantic query engine optimized for accurate extraction of relevant information. The project also takes an active approach to fine-tuning, whereby domain experts train a model that generates queries to retrieve records from the knowledgebase, and allows them to fine tune the retrieval engines by assessing the passages that are extracted from these records before they are fed into the Large Language Model for analysis. The output includes text descriptions of what is found through record assembly, accompanied by the records themselves for further evaluation and fine-tuning. Recently released records will serve as test data, with experts categorizing the information as new or already known. Performance metrics are analyzed, considering the impact of data size and composition on accuracy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
发放政府档案的审查过程可能费时,而且容易出错。大型语言模型可以帮助审查人员确定信息是否已经在公共领域。通过开发一个原型系统和测量不同阶段的性能,该项目旨在估计达到可接受的准确度所需的额外数据和培训。系统的迭代性质和领域专家的参与允许测量和最小化“幻觉”。该项目从知识数据库中挖掘大语言模型的推理能力。它开发了一个语义查询引擎,为准确提取相关信息进行了优化。该项目还采取了一种积极的微调方法,即领域专家训练一个模型,该模型生成查询以从知识库中检索记录,并允许他们通过评估从这些记录中提取的段落来微调检索引擎,然后将其送入大型语言模型进行分析。输出包括通过记录汇编找到的内容的文字说明,并附有记录本身,以供进一步评价和微调。最近发布的记录将作为测试数据,专家将这些信息归类为新的或已知的。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Connelly其他文献
Explorer Multi-Snapshot Imaging for Chromatographic Peak Analysis
用于色谱峰分析的 Explorer 多快照成像
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
M. I. James R. Hopgood;Matthew Connelly;Barry McHoull;Darren Troy - 通讯作者:
Darren Troy
63 - Performance of the Genomic DNA Assay for the Agilent 4200 TapeStation System
- DOI:
10.1016/j.cancergen.2016.05.064 - 发表时间:
2016-05-01 - 期刊:
- 影响因子:
- 作者:
Rainer Nitsche;Matthew Connelly;Colin Bayne;Susanne Glück;Marcus Gassmann - 通讯作者:
Marcus Gassmann
Matthew Connelly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344260 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Correlating neuronal activity and large volume nanoscale imaging using AI
使用 AI 将神经元活动与大体积纳米级成像关联起来
- 批准号:
BB/Y51391X/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Inferring the evolution of functional connectivity over learning in large-scale neural recordings using low-tensor-rank recurrent neural networks
使用低张量秩递归神经网络推断大规模神经记录中功能连接学习的演变
- 批准号:
BB/Y513957/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Evaluating scientific and ethical approaches to newborn screening with whole genome sequencing using large-scale population cohorts
使用大规模人群队列评估通过全基因组测序进行新生儿筛查的科学和伦理方法
- 批准号:
MR/X021351/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Cooperative Virtual Synchronous Machine Control of Multiple Inverters Using Low-Speed Communication to Achieve Large-Scale Installation of Renewable Energy
利用低速通信的多台逆变器协同虚拟同步机控制实现可再生能源大规模安装
- 批准号:
23H01395 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Causal inference of oral and general health using multiple large cohorts, NDB, and hospital data
使用多个大型队列、NDB 和医院数据对口腔和一般健康状况进行因果推断
- 批准号:
23H03117 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Heavy Rainfall Mechanism by Mathematical and Data-Driven Approach Using Large Ensemble
利用大集合的数学和数据驱动方法研究强降雨机制
- 批准号:
23KF0161 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
- 批准号:
10601968 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Comprehensive Study on Large-scale Fire Spreading Behavior using Turbulent Wind Tunnel
利用湍流风洞综合研究大面积火灾蔓延行为
- 批准号:
23KF0040 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




