Geometric and Stochastic System Theory (REU Supplement)
几何和随机系统理论(REU 补充)
基本信息
- 批准号:8718026
- 负责人:
- 金额:$ 22.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1988
- 资助国家:美国
- 起止时间:1988-04-15 至 1991-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recently the PI's have obtained some explicitly solvable stochastic optimal control problems of diffusion type in noncompact, rank-one symmetric spaces. It is proposed to generalize these results to noncompact symmetric spaces of rank greater than one, compact symmetric spaces, and homogeneous spaces. Such manifolds provide models for many physical phenomena, and relatively few examples of solvable stochastic control problems are known. It is proposed to continue work in stochastic adaptive control by investigating the asymptotic distribution and the rate of convergence of the average costs or the estimators for continuous-time, linear stochastic systems with and without time delays. It is proposed to investigate some specific models, and to expand work on the adaptive control of bilinear stochastic systems. It is proposed to relate adaptive control to geometric control by investigating some stochastic adaptive control problems in the aforementioned symmetric spaces. The aggregation of an autoregressive process is often used in applications, and they propose to continue some of their previous work. Some estimation problems have been solved in compact Lie groups and a symmetric space, and it is proposed to expand this work to other Lie groups and symmetric spaces. From these special estimation results and the relation between nonlinear filtering and stochastic control, it is proposed to use the aforementioned estimation and stochastic control results to solve some nonlinear filtering problems.
最近PI的已经获得了一些显式可解随机 非紧秩一扩散型最优控制问题 对称空间 建议将这些结果推广到 秩大于1的非紧对称空间,紧的 对称空间和齐性空间。 这种歧管提供 许多物理现象的模型,和相对较少的例子, 已知可解的随机控制问题。 提出要 继续在随机自适应控制的研究工作, 平均值的渐近分布和收敛速度 连续时间线性随机系统的估计量 有和没有时间延迟。 建议调查一些 具体模型,并扩大工作的自适应控制 双线性随机系统 建议将自适应 控制几何控制的研究一些随机自适应 在上述对称空间中的控制问题。 的 自回归过程的聚合经常被用于 申请,他们建议继续他们以前的一些 工作 在紧李群中解决了一些估计问题 和对称空间,并建议将这项工作扩展到其他 李群与对称空间。 从这些特殊的估计 结果以及非线性滤波与随机滤波的关系 控制,建议使用上述估计和 随机控制的结果来解决一些非线性滤波问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tyrone Duncan其他文献
Tyrone Duncan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tyrone Duncan', 18)}}的其他基金
Studies in Adaptive and Optimal Control of Stochastic Systems
随机系统的自适应和最优控制研究
- 批准号:
1411412 - 财政年份:2014
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
Stochastic Adaptive Control and Related Topics
随机自适应控制及相关主题
- 批准号:
9971790 - 财政年份:1999
- 资助金额:
$ 22.41万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Stochastic Adaptive Control
数学科学:随机自适应控制研究
- 批准号:
9623439 - 财政年份:1996
- 资助金额:
$ 22.41万 - 项目类别:
Continuing Grant
Mathematical Sciences: Stochastic Adaptive Control
数学科学:随机自适应控制
- 批准号:
9305936 - 财政年份:1993
- 资助金额:
$ 22.41万 - 项目类别:
Continuing Grant
Workshop on Stochastic Theory and Adaptive Control, University of Kansas, September 26-28, 1991
随机理论和自适应控制研讨会,堪萨斯大学,1991 年 9 月 26-28 日
- 批准号:
9114649 - 财政年份:1991
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
Stochastic Control and Related Topics
随机控制及相关主题
- 批准号:
9102714 - 财政年份:1991
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Temporal-Spatial Data Analytics for Stochastic Power System Stability
随机电力系统稳定性的时空数据分析
- 批准号:
DE220101277 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Discovery Early Career Researcher Award
Stochastic analysis of microscopic earthquake interactions and physical understanding of earthquake source system
微观地震相互作用的随机分析和震源系统的物理理解
- 批准号:
22K03753 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Bridging the Gap between Deterministic and Stochastic Structures for Mixed Stochasticity System Design
职业:弥合混合随机系统设计的确定性结构和随机结构之间的差距
- 批准号:
2142290 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Continuing Grant
Development of stochastic urban climate analysis system using ensemble simulation
利用集合模拟开发随机城市气候分析系统
- 批准号:
20K21035 - 财政年份:2020
- 资助金额:
$ 22.41万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Stochastic Methods for Electronic Excitations in Complex Nanoscale System
职业:复杂纳米级系统中电子激励的随机方法
- 批准号:
1945098 - 财政年份:2020
- 资助金额:
$ 22.41万 - 项目类别:
Continuing Grant
STTR Phase I: Stochastic Computing Host Intrusion Detection System (HIDS) for IoT devices
STTR 第一阶段:用于物联网设备的随机计算主机入侵检测系统 (HIDS)
- 批准号:
1956291 - 财政年份:2020
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
Data-Driven Learning Optimization of Dynamical System with Stochastic Uncertainty and Its Application
随机不确定性动态系统的数据驱动学习优化及其应用
- 批准号:
19K15019 - 财政年份:2019
- 资助金额:
$ 22.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Representation of coupled quantum dots by nonlinear stochastic ordinary equation and its application to simulation of THz communication system
耦合量子点的非线性随机常方程表示及其在太赫兹通信系统仿真中的应用
- 批准号:
19K04394 - 财政年份:2019
- 资助金额:
$ 22.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Infectious diseases based on the stochastic System Theory under some Structure and Its Application
某种结构下基于随机系统理论的传染病分析及其应用
- 批准号:
19K04442 - 财政年份:2019
- 资助金额:
$ 22.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EPCN: Enabling a Transactive Energy System from a Stochastic Geometry Framework
EPCN:从随机几何框架启用交互能源系统
- 批准号:
1855216 - 财政年份:2019
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant














{{item.name}}会员




