Interpretation of Probabilities in Physics
物理学中概率的解释
基本信息
- 批准号:8805388
- 负责人:
- 金额:$ 0.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1988
- 资助国家:美国
- 起止时间:1988-06-15 至 1989-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In classical physics, the role of probability was primarily to express ignorance and opinion. Probability was needed because the physicist simply did not have enough information to make an absolute determination. In principle, however, as with Pascal's "superman," if scientists had sufficient prior information, they would not need probabilities. The quantum revolution of the 20th century, however, denied such certainly is ever possible, even with infinite knowledge of the prior conditions. Einstein objected to quantum theory, because of its denial of ever achieving certainty, that "God does not play dice with the Universe." In this research project, Professor Van Fraassen is examining these two differing aspects of the use of probabilities in physics i.e. that which is due to "ignorance or opinion" given insufficient prior information, and that due to theories like quantum theory which deny the possibility of certainty. The first problem is a general one: what belief is involved concerning the actual world, in the acceptance of a (n irreducibly) statistical theory? To formulate this more precisely, the concept of belief is replaced by that of opinion, represented as personal probability. There is a generally accepted recipe for how opinions about objective chance (physical probability) constrain opinions about what will actually happen. Any solution to the first problem may be required to entail the correctness of this recipe; other requirements may also be laid down. The second problem is specific to contemporary physics: what interpretation can we give to the probabilities it presents with their characteristic features of "probability interference" and "loss of individual identity"? Professor Van Fraassen will investigate this problem with special reference to one interpretation of quantum theory, (the Copenhagen variation of the modal interpretation), and one area in quantum theory (statistical behavior of identical particles).
在经典物理学中,概率的作用主要是 表达无知和意见。 需要概率,因为 物理学家没有足够的信息来做出 绝对的决心。 然而,原则上,与帕斯卡的 “超人”,如果科学家有足够的先验信息,他们 不需要概率。 20世纪的量子革命 世纪,然而,否认这种肯定是永远可能的,甚至 对先验条件的无限了解。 爱因斯坦 反对量子理论,因为它否认了 ”又说:“真主不与任何人争论。 宇宙“在这个研究项目中,货车弗拉森教授是 研究概率使用的这两个不同方面, 在物理学中,即由于“无知或意见”而给出的 先验信息不足,由于理论, 否定确定性可能性的量子理论 第一个问题是一个普遍性的问题:涉及到什么样的信念 关于现实世界,在接受(n) 统计理论(Statistical Theory)? 为了更好地表达这一点 确切地说,信仰的概念被意见的概念所取代, 以个人概率表示。 有一个通常为 关于客观机会(物理)的观点 概率)限制了人们对实际发生的事情的看法。 第一个问题的任何解决方案都可能需要 该配方的正确性;也可以提出其他要求 下来 第二个问题是当代物理学特有的: 我们可以解释它所呈现的概率吗? 它们的“概率干扰”特征, “丧失个人身份” 货车弗拉森教授 研究这一问题,特别是关于一个 量子理论的哥本哈根变化(Copenhagen Variation) 模态解释),量子理论的一个领域 (相同粒子的统计行为)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bas van Fraassen其他文献
Bas van Fraassen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bas van Fraassen', 18)}}的其他基金
Scientific Representation: Structure and Perspective
科学表征:结构与视角
- 批准号:
0549002 - 财政年份:2006
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
The Problem of Indistinguishable Particles
无法区分粒子的问题
- 批准号:
8407076 - 财政年份:1984
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
A Model of Probability For Quantified Propositions
量化命题的概率模型
- 批准号:
8219491 - 财政年份:1983
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
An Epistemology of Science Compatible With Empiricism
与经验主义相容的科学认识论
- 批准号:
8204111 - 财政年份:1982
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
An Empiricist Account of Probability Judgments and Theory Acceptance
概率判断和理论接受的经验主义解释
- 批准号:
8005827 - 财政年份:1980
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Rational Belief Change and Scientific Inference
理性信念的转变与科学推理
- 批准号:
7808464 - 财政年份:1978
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
相似海外基金
Accurate Atomic Transition Probabilities in Aid of APOGEE and the Study of Galactic Chemical Evolution
准确的原子跃迁概率辅助 APOGEE 和银河化学演化研究
- 批准号:
2206050 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Nonadiabatic Transition Probabilities: Applications in Spectroscopy, Quantum Thermodynamics, and Quantum Computing
非绝热跃迁概率:在光谱学、量子热力学和量子计算中的应用
- 批准号:
2154028 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
Continuing Grant
Conference: CRM Thematic Semester Spring 2022: Probabilities and PDEs
会议:2022 年春季 CRM 主题学期:概率和偏微分方程
- 批准号:
2202247 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Linking and Link Transition probabilities in ring polymer models
环聚合物模型中的连接和连接转变概率
- 批准号:
564762-2021 - 财政年份:2021
- 资助金额:
$ 0.9万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Probability on Groups and Semigroups of Probabilities
职业:概率群和半群的概率
- 批准号:
1944153 - 财政年份:2020
- 资助金额:
$ 0.9万 - 项目类别:
Continuing Grant
Linking and Link Transition probabilities in polymer models
聚合物模型中的链接和链接转移概率
- 批准号:
542056-2019 - 财政年份:2019
- 资助金额:
$ 0.9万 - 项目类别:
University Undergraduate Student Research Awards
Nonadiabatic Transition Probabilities: Applications in Spectroscopy and Quantum Thermodynamics
非绝热跃迁概率:在光谱学和量子热力学中的应用
- 批准号:
1900399 - 财政年份:2019
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
RI: AF: Small: Optimizing probabilities for learning: sampling meets optimization
RI:AF:小:优化学习概率:采样满足优化
- 批准号:
1909365 - 财政年份:2019
- 资助金额:
$ 0.9万 - 项目类别:
Continuing Grant
Loss Reserving and Ruin Probabilities
损失保留和破产概率
- 批准号:
541848-2019 - 财政年份:2019
- 资助金额:
$ 0.9万 - 项目类别:
University Undergraduate Student Research Awards
Estimating Probabilities of Rare Events in Interacting Particle Systems
估计相互作用粒子系统中罕见事件的概率
- 批准号:
1853968 - 财政年份:2019
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant