Toward Accurate Inference in Nonlinear Econometrics
非线性计量经济学的准确推理
基本信息
- 批准号:8808015
- 负责人:
- 金额:$ 12.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1988
- 资助国家:美国
- 起止时间:1988-10-15 至 1992-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is for continued support for a program of research focusing on nonlinear, econometric methods. The research is based on the premise that an econometric specification is an approximation to an underlying data generating mechanism. In keeping with this perspective, methodologies will be developed that improve the approximation as more information becomes available and permits more reliable inference at each intermediate stage of model evolution. The scientific importance of this research derives from the fact that the goal of empirical research is to make an inference about an economic proposition per se, not about an economic proposition entangled with a potentially misspecified or incorrect model. With standard approaches to specification tests, one cannot be sure that the estimate associated with an inference is accurate. The objective of this research can be viewed as the development of a model selection strategy that guarantees that the final estimate is accurate. This objective is to be accomplished at a level of generality that encompasses most nonlinear, econometric inference procedures. The basic idea is to endow a procedure with nonparametric properties by replacing the structural model with a truncated series expansion, or the error density with a truncated expansion, or both. By letting the truncation point grow adaptively with sample size, ultimate convergence to the underlying data generating mechanism is assured. Applications to conditionally heterogeneous time-series such as occur in finance and monetary and macro economics will be undertaken. Bayesian methods will also be investigated.
这一奖项是为了表彰对专注于非线性计量经济学方法的研究项目的持续支持。这项研究的前提是,计量经济学规范是对潜在数据生成机制的近似。为了与这一观点保持一致,将开发出随着更多信息的获得而改进近似值的方法,并允许在模型演变的每个中间阶段进行更可靠的推断。这项研究的科学重要性源于这样一个事实,即实证研究的目标是对一个经济命题本身做出推断,而不是关于一个与潜在错误或错误的模型纠缠在一起的经济命题。使用规范测试的标准方法,人们不能确保与推断相关的估计是准确的。这项研究的目的可以看作是发展一种模型选择策略,以确保最终估计是准确的。这一目标是在涵盖大多数非线性、计量经济学推理程序的一般性水平上实现的。其基本思想是通过将结构模型替换为截断级数展开,或将误差密度替换为截断展开,或两者兼而有之,从而赋予过程非参数性质。通过使截断点随样本大小自适应地增长,确保最终收敛到潜在的数据生成机制。将应用于有条件的非均匀时间序列,例如在金融和货币及宏观经济学中出现的时间序列。贝叶斯方法也将被研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
A. Ronald Gallant其他文献
Experience as Co-Editor, A. Ronald Gallant
A. 罗纳德·加兰特作为合编者的经验
- DOI:
10.1016/j.jeconom.2023.01.016 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:4.000
- 作者:
A. Ronald Gallant - 通讯作者:
A. Ronald Gallant
Testing a Nonlinear Regression Specification: A Nonregular Case
- DOI:
10.1080/01621459.1977.10480606 - 发表时间:
1977-09 - 期刊:
- 影响因子:3.7
- 作者:
A. Ronald Gallant - 通讯作者:
A. Ronald Gallant
Purebred or hybrid?: Reproducing the volatility in term structure dynamics
纯种还是混合?:重现期限结构动态的波动性
- DOI:
10.1016/s0304-4076(03)00106-4 - 发表时间:
2003 - 期刊:
- 影响因子:6.3
- 作者:
D. Ahn;Robert F. Dittmar;B. Gao;A. Ronald Gallant;Jennifer S. Conrad;Phil Lee;Jinbum Choi - 通讯作者:
Jinbum Choi
A. Ronald Gallant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('A. Ronald Gallant', 18)}}的其他基金
Computationally Intensive Strategies for Structural Modelling
结构建模的计算密集型策略
- 批准号:
0438174 - 财政年份:2005
- 资助金额:
$ 12.93万 - 项目类别:
Continuing Grant
Extensions and Applications of Efficient Method of Moments
高效矩量法的推广与应用
- 批准号:
0000176 - 财政年份:2000
- 资助金额:
$ 12.93万 - 项目类别:
Continuing Grant
Efficient Method of Moments Estimation with Application to Stochastic Differential Equations
应用于随机微分方程的高效矩估计方法
- 批准号:
9514198 - 财政年份:1996
- 资助金额:
$ 12.93万 - 项目类别:
Standard Grant
Toward Accurate Inference in Nonlinear Dynamic Models
实现非线性动态模型的准确推理
- 批准号:
9320376 - 财政年份:1993
- 资助金额:
$ 12.93万 - 项目类别:
Continuing Grant
Toward Accurate Inference in Nonlinear Dynamic Models
实现非线性动态模型的准确推理
- 批准号:
9111867 - 财政年份:1992
- 资助金额:
$ 12.93万 - 项目类别:
Continuing Grant
Semi-nonparametric and Finite Dimensional Nonlinear Econometric Inference
半非参数和有限维非线性计量经济学推理
- 批准号:
8507829 - 财政年份:1985
- 资助金额:
$ 12.93万 - 项目类别:
Continuing Grant
Instrumental Variables Methods For Nonlinear Models
非线性模型的工具变量方法
- 批准号:
8014239 - 财政年份:1981
- 资助金额:
$ 12.93万 - 项目类别:
Standard Grant
Computer Science and Statistics: Eleventh Annual Symposium On the Interface in North Carolina, March 6-7, 1978
计算机科学与统计:第十一届接口年度研讨会,北卡罗来纳州,1978 年 3 月 6-7 日
- 批准号:
7728307 - 财政年份:1978
- 资助金额:
$ 12.93万 - 项目类别:
Standard Grant
相似海外基金
Realization of highly accurate estimation of structural vibration characteristics by blind deconvolution and Bayesian inference
通过盲反卷积和贝叶斯推理实现结构振动特性的高精度估计
- 批准号:
22K18830 - 财政年份:2022
- 资助金额:
$ 12.93万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Accurate and robust inference of mutational bias across complex traits and diseases
准确而稳健地推断复杂性状和疾病的突变偏差
- 批准号:
10373976 - 财政年份:2021
- 资助金额:
$ 12.93万 - 项目类别:
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
- 批准号:
2046874 - 财政年份:2021
- 资助金额:
$ 12.93万 - 项目类别:
Continuing Grant
Accurate and robust inference of mutational bias across complex traits and diseases
准确而稳健地推断复杂性状和疾病的突变偏差
- 批准号:
10655302 - 财政年份:2021
- 资助金额:
$ 12.93万 - 项目类别:
Accurate inference in high-dimensional econometrics
高维计量经济学的精确推理
- 批准号:
1923060 - 财政年份:2017
- 资助金额:
$ 12.93万 - 项目类别:
Studentship
AF: Small: Fast and accurate computational tools for large-scale evolutionary inference: a phylogenetic network approach
AF:小型:用于大规模进化推理的快速准确的计算工具:系统发育网络方法
- 批准号:
1714417 - 财政年份:2017
- 资助金额:
$ 12.93万 - 项目类别:
Standard Grant
Collaborative Research: Higher-Order Asymptotics and Accurate Inference for Post-Selection
合作研究:高阶渐进和后选择的精确推理
- 批准号:
1712839 - 财政年份:2017
- 资助金额:
$ 12.93万 - 项目类别:
Standard Grant
Collaborative Research: Higher-Order Asymptotics and Accurate Inference for Post-Selection
合作研究:高阶渐进和后选择的精确推理
- 批准号:
1712940 - 财政年份:2017
- 资助金额:
$ 12.93万 - 项目类别:
Standard Grant
Study of Super Accurate Methods for Geometric Inference from Images
图像几何推理的超精确方法研究
- 批准号:
22300057 - 财政年份:2010
- 资助金额:
$ 12.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Resource-bounded adaptive inference of accurate conditional probability estimates from data
根据数据精确条件概率估计的资源有限自适应推理
- 批准号:
DP0556279 - 财政年份:2005
- 资助金额:
$ 12.93万 - 项目类别:
Discovery Projects