Extensions and Applications of Efficient Method of Moments

高效矩量法的推广与应用

基本信息

项目摘要

The proposed research to be undertaken will continue and extend a long-standing program of research in nonlinear econometric methods. The view is that an econometric specification is an approximation to the underlying data generating mechanism. In keeping with this view, methodologies have been developed that sequentially improve the approximation as information becomes available, and permit reliable inference at each intermediate stage of model evolution. These objectives have been accomplished at a level of generality that encompasses most nonlinear econometric inference procedures. The basic idea is to endow a procedure with nonparametric properties by replacing the structural model with a truncated series expansion, the error density with a truncated expansion, or both. By letting the truncation point grow adaptively with sample size, the approximation is accurate enough at each intermediate stage to permit reliable inference and ultimate convergence to the underlying data generating mechanism is assured.Tightly parameterized structural modeling can be carried out within this paradigm. The idea is to require that moments implied by the structural model match the scores of a model developed according to the methodology described above. This estimator has certain advantages. Estimates can be made as efficient as if maximum likelihood had been employed. Unlike maximum likelihood, the computational burden does not increase if the state vector is partially observed either because the structural model contains latent variables or because data is missing. Studentized scores serve as diagnostic tests and, because the scores correspond to identifiable features of data, failure to pass a diagnostic indicates which features of data a tightly parameterized structural model cannot explain. This is an invaluable aid to model development.The specific proposal is to establish that the advantages claimed above follow from assumptions that are more primitive than the high level assumptions used to date, to improve computational efficiency, and to continue an ongoing program of empirical work that exploits the new methodologies discussed above. Initial work will focus on the estimation of structural macro models with attention to the simultaneous use of time series and panel data. Reduced form applications will focus on methods for extracting the continuous time volatility process from discretely sampled asset prices and efficiently predicting functionals of the continuous time process such as integrated forward volatility.
拟进行的研究将继续和扩展非线性计量经济学方法的长期研究计划。这种观点认为,计量经济学规范是对基本数据生成机制的近似。与此观点相一致,方法已经开发,顺序地改善近似信息变得可用,并允许可靠的推理模型演变的每个中间阶段。这些目标已经完成了一般性的水平,包括最非线性计量经济学推理程序。其基本思想是通过用截断级数展开替换结构模型,用截断展开替换误差密度,或两者兼而有之,赋予过程非参数特性。通过使截断点随样本大小自适应地增长,近似在每个中间阶段都足够精确,以允许可靠的推断,并确保最终收敛到底层数据生成机制。这个想法是要求结构模型所隐含的时刻与根据上述方法开发的模型的分数相匹配。该估计器具有某些优点。估计可以像采用最大似然法一样有效。与最大似然不同的是,如果状态向量被部分观测,计算负担不会增加,因为结构模型包含潜在变量或因为数据丢失。学生化分数用作诊断测试,并且由于分数对应于数据的可识别特征,因此未能通过诊断表明紧密参数化结构模型无法解释数据的哪些特征。这是一个宝贵的援助模型development.The具体的建议是建立上述声称的优势,从假设是更原始的比高层次的假设使用日期,以提高计算效率,并继续进行计划的实证工作,利用新的方法上面讨论。初步工作将侧重于结构宏观模型的估计,同时注意时间序列和面板数据的使用。简化形式的应用程序将集中在方法提取连续时间波动过程从离散采样的资产价格和有效地预测连续时间过程的泛函,如集成的远期波动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

A. Ronald Gallant其他文献

Experience as Co-Editor, A. Ronald Gallant
A. 罗纳德·加兰特作为合编者的经验
  • DOI:
    10.1016/j.jeconom.2023.01.016
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    A. Ronald Gallant
  • 通讯作者:
    A. Ronald Gallant
Testing a Nonlinear Regression Specification: A Nonregular Case
Purebred or hybrid?: Reproducing the volatility in term structure dynamics
纯种还是混合?:重现期限结构动态的波动性
  • DOI:
    10.1016/s0304-4076(03)00106-4
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    D. Ahn;Robert F. Dittmar;B. Gao;A. Ronald Gallant;Jennifer S. Conrad;Phil Lee;Jinbum Choi
  • 通讯作者:
    Jinbum Choi

A. Ronald Gallant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('A. Ronald Gallant', 18)}}的其他基金

Computationally Intensive Strategies for Structural Modelling
结构建模的计算密集型策略
  • 批准号:
    0438174
  • 财政年份:
    2005
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Continuing Grant
Efficient Method of Moments Estimation with Application to Stochastic Differential Equations
应用于随机微分方程的高效矩估计方法
  • 批准号:
    9514198
  • 财政年份:
    1996
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Standard Grant
Toward Accurate Inference in Nonlinear Dynamic Models
实现非线性动态模型的准确推理
  • 批准号:
    9320376
  • 财政年份:
    1993
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Continuing Grant
Toward Accurate Inference in Nonlinear Dynamic Models
实现非线性动态模型的准确推理
  • 批准号:
    9111867
  • 财政年份:
    1992
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Continuing Grant
Toward Accurate Inference in Nonlinear Econometrics
非线性计量经济学的准确推理
  • 批准号:
    8808015
  • 财政年份:
    1988
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Continuing Grant
Semi-nonparametric and Finite Dimensional Nonlinear Econometric Inference
半非参数和有限维非线性计量经济学推理
  • 批准号:
    8507829
  • 财政年份:
    1985
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Continuing Grant
Instrumental Variables Methods For Nonlinear Models
非线性模型的工具变量方法
  • 批准号:
    8014239
  • 财政年份:
    1981
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Standard Grant
Computer Science and Statistics: Eleventh Annual Symposium On the Interface in North Carolina, March 6-7, 1978
计算机科学与统计:第十一届接口年度研讨会,北卡罗来纳州,1978 年 3 月 6-7 日
  • 批准号:
    7728307
  • 财政年份:
    1978
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Vertical GaN-on-Si membrane power transistors: Efficient power electronics for mass-market applications (VertiGaN)`
垂直硅基氮化镓薄膜功率晶体管:面向大众市场应用的高效电力电子器件 (VertiGaN)`
  • 批准号:
    EP/X014924/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Research Grant
Efficient Integrated Photonic Phase Shifters for Data/Telecom and Quantum Applications
适用于数据/电信和量子应用的高效集成光子移相器
  • 批准号:
    EP/Y00082X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Research Grant
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
  • 批准号:
    2341183
  • 财政年份:
    2023
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Standard Grant
CAREER: Towards Efficient Cryptography for Next Generation Applications
职业:面向下一代应用的高效密码学
  • 批准号:
    2402031
  • 财政年份:
    2023
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Continuing Grant
Double efficient pilot fuel free ceramic hydrogen combustion engine technology for marine applications
适用于船舶应用的双效先导无燃料陶瓷氢燃烧发动机技术
  • 批准号:
    10041177
  • 财政年份:
    2023
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Feasibility Studies
SAFeCRAFT: Safe and Efficient Use of Sustainable Fuels in Maritime Transport Applications
SAFeCRAFT:在海上运输应用中安全高效地使用可持续燃料
  • 批准号:
    10110519
  • 财政年份:
    2023
  • 资助金额:
    $ 23.44万
  • 项目类别:
    EU-Funded
Development of ultra-efficient antibodies for single cell mapping applications
开发用于单细胞作图应用的超高效抗体
  • 批准号:
    10601458
  • 财政年份:
    2023
  • 资助金额:
    $ 23.44万
  • 项目类别:
NSF Convergence Accelerator Track I: Advancing Sustainable Topological Material Prototype Devices for Energy-efficient Applications
NSF 融合加速器轨道 I:推进可持续拓扑材料原型器件的节能应用
  • 批准号:
    2345084
  • 财政年份:
    2023
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Cooperative Agreement
REU Site: Applying Data Science on Energy-efficient Cluster Systems and Applications
REU 网站:将数据科学应用于节能集群系统和应用
  • 批准号:
    2244391
  • 财政年份:
    2023
  • 资助金额:
    $ 23.44万
  • 项目类别:
    Standard Grant
Efficient and Secure Machine Learning Systems for Biomedical Data Applications
适用于生物医学数据应用的高效、安全的机器学习系统
  • 批准号:
    574900-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 23.44万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了