Special Functions and Orthogonal Expansions with Applications to Nonlinear Dynamics and Quantum Mechanics
特殊函数和正交展开在非线性动力学和量子力学中的应用
基本信息
- 批准号:8814026
- 负责人:
- 金额:$ 23.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-03-01 至 1992-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project combines the efforts of two investigators working on problems involving orthogonal expansions, special functions and their applications. The program concerns investigations into qualitative and quantitative features of orthogonal polynomials in several variables and polynomials orthogonal with respect to complex weight functions. Work is also planned on the application of elliptic functions to study spectral properties of orthogonal polynomials arising from stochastic processes and perturbation theory. Additional work will be done investigating algorithms which reduce the complexity of equations describing quantum mechanics. In particular, the applicability of Pade approximants or their radial simplifications will be considered. Related work involves the distribution of roots of complex orthogonal polynomials and Pade approximants. The latter may shed light on the poles of Pade approximants in understanding resonance phenomena in non-linear dynamics. While some of this research represents continuations of earlier work, that relating to multivariate polynomials follows recent breakthroughs following a period of intense research by a number of mathematicians. Only during the past year have multivariate analogues of classical one-variable results been attained. These include multivariate integrals extending the well-known gamma and beta integrals. The complexity of this research will require advanced computational support for testing and experimentation.
这个项目结合了两位研究者在正交展开、特殊函数及其应用等问题上的努力。该方案涉及调查的定性和定量特征正交多项式在几个变量和多项式正交相对于复杂的权函数。利用椭圆函数研究随机过程和摄动理论中正交多项式的谱性质。额外的工作将用于研究降低描述量子力学方程复杂性的算法。特别地,将考虑Pade近似或其径向简化的适用性。相关工作包括复正交多项式的根分布和Pade近似。后者可能有助于理解非线性动力学中的共振现象。虽然这些研究中的一些代表了早期工作的延续,但与多元多项式相关的研究是在许多数学家经过一段时间的深入研究后取得的最新突破。只有在过去的一年中,才获得了经典单变量结果的多元类似物。这些包括多元积分扩展了众所周知的积分和积分。这项研究的复杂性将需要先进的计算支持测试和实验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Saff其他文献
Energy bounds for weighted spherical codes and designs via linear programming
通过线性规划加权球形代码和设计的能量界限
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sergiy Borodachov;P. Boyvalenkov;P. Dragnev;Douglas Hardin;Edward Saff;Maya M. Stoyanova - 通讯作者:
Maya M. Stoyanova
Edward Saff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Saff', 18)}}的其他基金
Applications and analysis of discrete energy and polarization
离散能量和偏振的应用和分析
- 批准号:
1516400 - 财政年份:2015
- 资助金额:
$ 23.69万 - 项目类别:
Standard Grant
Discrete Energy and Polarization Problems on Manifolds with Applications
流形上的离散能量和偏振问题及其应用
- 批准号:
1412428 - 财政年份:2014
- 资助金额:
$ 23.69万 - 项目类别:
Standard Grant
Computational Methods and Function Theory Conference, 2013
计算方法与函数理论会议,2013
- 批准号:
1308241 - 财政年份:2013
- 资助金额:
$ 23.69万 - 项目类别:
Standard Grant
CMG Collaborative Research: Imaging Magnetization Distributions in Geological Samples
CMG 合作研究:对地质样本中的磁化分布进行成像
- 批准号:
0934630 - 财政年份:2009
- 资助金额:
$ 23.69万 - 项目类别:
Standard Grant
Computational Methods and Function Theory Conference; June 2009; Ankara, Turkey
计算方法与函数理论会议;
- 批准号:
0904132 - 财政年份:2009
- 资助金额:
$ 23.69万 - 项目类别:
Standard Grant
Discrete Minimal Energy Configurations and Related Problems in Potential Theory
势理论中的离散最小能量配置及相关问题
- 批准号:
0603828 - 财政年份:2006
- 资助金额:
$ 23.69万 - 项目类别:
Standard Grant
Minimal Energy Problems on Manifolds
歧管上的最小能量问题
- 批准号:
0532154 - 财政年份:2005
- 资助金额:
$ 23.69万 - 项目类别:
Standard Grant
Computational Methods and Function Theory Conference, 2005
计算方法和函数理论会议,2005
- 批准号:
0500614 - 财政年份:2005
- 资助金额:
$ 23.69万 - 项目类别:
Standard Grant
US-France International Research Experiences for Graduate Students: Vanderbilt University Department of Mathematics and INRIA-Sophia Antipolis Exchange Program
美法研究生国际研究经验:范德比尔特大学数学系和INRIA-Sophia Antipolis交流项目
- 批准号:
0334769 - 财政年份:2003
- 资助金额:
$ 23.69万 - 项目类别:
Standard Grant
Conference "Advances in Constructive Approximation"
会议“构造近似的进展”
- 批准号:
0242875 - 财政年份:2003
- 资助金额:
$ 23.69万 - 项目类别:
Standard Grant
相似海外基金
study will follow the work of Dr Clare Dunning and Professor Peter Clarkson on orthogonal polynomials and special functions.
这项研究将遵循克莱尔·邓宁博士和彼得·克拉克森教授在正交多项式和特殊函数方面的工作。
- 批准号:
2876144 - 财政年份:2022
- 资助金额:
$ 23.69万 - 项目类别:
Studentship
ORTHOGONAL POLYNOMIALS AND SPECIAL FUNCTIONS SUMMER SCHOOL
正交多项式和特殊函数暑期学校
- 批准号:
1600903 - 财政年份:2016
- 资助金额:
$ 23.69万 - 项目类别:
Standard Grant
Orthogonal Polynomials, Special Functions, and Applications
正交多项式、特殊函数和应用
- 批准号:
0704341 - 财政年份:2007
- 资助金额:
$ 23.69万 - 项目类别:
Standard Grant
Special functions, orthogonal polynomials, and geometric theory
特殊函数、正交多项式和几何理论
- 批准号:
7353-2002 - 财政年份:2006
- 资助金额:
$ 23.69万 - 项目类别:
Discovery Grants Program - Individual
Special functions and orthogonal polynomials
特殊函数和正交多项式
- 批准号:
5199-2001 - 财政年份:2005
- 资助金额:
$ 23.69万 - 项目类别:
Discovery Grants Program - Individual
Special functions, orthogonal polynomials, and geometric theory
特殊函数、正交多项式和几何理论
- 批准号:
7353-2002 - 财政年份:2005
- 资助金额:
$ 23.69万 - 项目类别:
Discovery Grants Program - Individual
Special functions and orthogonal polynomials
特殊函数和正交多项式
- 批准号:
5199-2001 - 财政年份:2004
- 资助金额:
$ 23.69万 - 项目类别:
Discovery Grants Program - Individual
Special functions, orthogonal polynomials, and geometric theory
特殊函数、正交多项式和几何理论
- 批准号:
7353-2002 - 财政年份:2004
- 资助金额:
$ 23.69万 - 项目类别:
Discovery Grants Program - Individual
International Workshop on Special Functions, Orthogonal Polynomials, Quantum Groups and Related Topics
特殊函数、正交多项式、量子群及相关主题国际研讨会
- 批准号:
0326739 - 财政年份:2003
- 资助金额:
$ 23.69万 - 项目类别:
Standard Grant
Special functions, orthogonal polynomials, and geometric theory
特殊函数、正交多项式和几何理论
- 批准号:
7353-2002 - 财政年份:2003
- 资助金额:
$ 23.69万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




