Minimal Energy Problems on Manifolds

歧管上的最小能量问题

基本信息

  • 批准号:
    0532154
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTThe minimum energy (or "ground state") configurations for N particles interacting via a pairwise repulsive interaction V and confined to a fixed manifold A is of great mathematical and physical interest and has been the subject of much effort over the years from a variety of workers. In particular, such configurations are useful for purposes of sampling data, computer graphics, best-packing and understanding the physics of self-assembling materials. The grant will enable the researchers to investigate:(i) how relationships between geometrical, topological, and combinatorial properties of a manifold are reflected in the asymptotics of minimal energy problems; (ii) whether there are properties of minimal energy configurations that are universal in the sense thatthey are insensitive to the choice of underlying potential function; and (iii) how the theory can be applied in the development of efficientalgorithms for generating large numbers of points on a surface that are uniformly distributed or have some non-uniform prescribed distribution. We expect the results of this research to help elucidate the ordering of matter on curved surfaces. Furthermore, the infrastructure for research and education will be enhanced by the participation of graduate students and post-doctoral researchers who will broaden their education through interactions with condensed matter physicists as well as participate in collaborations and international exchanges with members of the Australian Centre of Excellence in Mathematics and Statistics of Complex Systems' research team at the University of New South Wales (Sydney, Australia).
N个粒子通过两两排斥相互作用V相互作用并被限制在一个固定的流形A中的最小能量(或“基态”)构型具有很大的数学和物理意义,并且多年来一直是各种工作者努力的主题。特别地,这样的配置对于采样数据、计算机图形、最佳包装和理解自组装材料的物理学的目的是有用的。该笔拨款将使研究人员能够研究:(i)流形的几何、拓扑和组合性质之间的关系如何反映在最小能量问题的渐近性中;(ii)是否存在最小能量构型的普适性质,即它们对潜在势函数的选择不敏感;以及(iii)如何将该理论应用于开发用于在表面上生成大量均匀分布或具有一些非均匀分布的点的有效算法中。统一规定的分配。我们希望这项研究的结果有助于阐明曲面上物质的有序性。此外,研究生和博士后研究人员的参与将加强研究和教育的基础设施,他们将通过与凝聚态物理学家的互动来扩大他们的教育,并参与与新南威尔士大学澳大利亚数学和复杂系统统计卓越中心研究团队成员的合作和国际交流(澳大利亚悉尼)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Saff其他文献

Energy bounds for weighted spherical codes and designs via linear programming
通过线性规划加权球形代码和设计的能量界​​限
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sergiy Borodachov;P. Boyvalenkov;P. Dragnev;Douglas Hardin;Edward Saff;Maya M. Stoyanova
  • 通讯作者:
    Maya M. Stoyanova

Edward Saff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Saff', 18)}}的其他基金

Applications and analysis of discrete energy and polarization
离散能量和偏振的应用和分析
  • 批准号:
    1516400
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Discrete Energy and Polarization Problems on Manifolds with Applications
流形上的离散能量和偏振问题及其应用
  • 批准号:
    1412428
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Computational Methods and Function Theory Conference, 2013
计算方法与函数理论会议,2013
  • 批准号:
    1308241
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Imaging Magnetization Distributions in Geological Samples
CMG 合作研究:对地质样本中的磁化分布进行成像
  • 批准号:
    0934630
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Computational Methods and Function Theory Conference; June 2009; Ankara, Turkey
计算方法与函数理论会议;
  • 批准号:
    0904132
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Discrete Minimal Energy Configurations and Related Problems in Potential Theory
势理论中的离散最小能量配置及相关问题
  • 批准号:
    0603828
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Computational Methods and Function Theory Conference, 2005
计算方法和函数理论会议,2005
  • 批准号:
    0500614
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
US-France International Research Experiences for Graduate Students: Vanderbilt University Department of Mathematics and INRIA-Sophia Antipolis Exchange Program
美法研究生国际研究经验:范德比尔特大学数学系和INRIA-Sophia Antipolis交流项目
  • 批准号:
    0334769
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference "Advances in Constructive Approximation"
会议“构造近似的进展”
  • 批准号:
    0242875
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Discrete and Continuous Extremal Problems in Approximation Theory
逼近论中的离散和连续极值问题
  • 批准号:
    0296026
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

度量测度空间上基于狄氏型和p-energy型的热核理论研究
  • 批准号:
    QN25A010015
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Quantum computing solutions for optimisation problems in Energy Grids
能源网格优化问题的量子计算解决方案
  • 批准号:
    10108062
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Small Business Research Initiative
Quantum computing solutions for optimisation problems in Energy Grids
能源网格优化问题的量子计算解决方案
  • 批准号:
    10083523
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Small Business Research Initiative
REU Site: Summer Research Experience at UT-Permian Basin Focused on the Applications of Science and Technology in Solving Real Energy and Environmental Problems
REU 网站:UT-二叠纪盆地夏季研究经验,重点关注科学技术在解决实际能源和环境问题中的应用
  • 批准号:
    2244497
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical and computational problems in energy driven pattern formation
能量驱动模式形成中的数学和计算问题
  • 批准号:
    RGPIN-2021-04114
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Energy, Technology, Behaviour, Culture and Regulation; The complex problems and transition engineering solutions for the future of local, sustainable
能源、技术、行为、文化和监管;
  • 批准号:
    2755141
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of an energy conservative accurate particle method for fluid-structure interaction problems
针对流固耦合问题的能量守恒精确粒子方法的开发
  • 批准号:
    21K14250
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Using quantum computers to solve challenging problems in high energy physics
使用量子计算机解决高能物理中的挑战性问题
  • 批准号:
    2581921
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Mathematical and computational problems in energy driven pattern formation
能量驱动模式形成中的数学和计算问题
  • 批准号:
    RGPIN-2021-04114
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Semiclassical analysis of spectral and scattering problems arising from energy-level crossings
能级交叉引起的光谱和散射问题的半经典分析
  • 批准号:
    21K03282
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and evaluation of geothermal power generation equipment and curriculum to promote understanding of energy situation and environmental problems
开发和评估地热发电设备和课程,以促进对能源状况和环境问题的了解
  • 批准号:
    19K03110
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了