Bounded Rationality and the Role of History in Decision Under Uncertainty

有限理性和历史在不确定性决策中的作用

基本信息

  • 批准号:
    8814672
  • 负责人:
  • 金额:
    $ 4.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1988
  • 资助国家:
    美国
  • 起止时间:
    1988-09-15 至 1991-02-28
  • 项目状态:
    已结题

项目摘要

This research suggests a new model of decision under uncertainty in a multi-period framework where the decision maker (an individual or an organization) is assumed to be boundedly rational. The model differs from existing ones in two key assumptions: (1) the process is assumed to have an infinite history, i.e., to be in a "steady state," and (2Õ) the bounded rationality notion is modeled by a new computational model--a Turing machine with memory. The research objectives are: to define formally a Turing machine with memory; to study the various models of machines with memory, compare their computational ability and analyze the trade-offs among their complexity, size of memory and length of recall; to study the effects of interaction, assuming more than one decision maker is involved, and; to generalize the model in order to allow for the appearance and disappearance of decision makers (or agents) in the context of cooperative and competitive models.
本研究提出了一种新的多时期框架下的不确定决策模型,该模型假设决策者(个人或组织)是有限理性的。该模型与现有的模型在两个关键假设上有所不同:(1)假设该过程具有无限的历史,即处于“稳定状态”,并且(2Õ)有限理性概念由一个新的计算模型-具有记忆的图灵机来建模。研究目标是:形式化地定义具有记忆的图灵机;研究各种具有记忆的机器模型,比较它们的计算能力,分析它们的复杂性、记忆大小和回忆时间之间的权衡;为了研究互动的影响,假设涉及多个决策者,并且;推广模型,以便在合作和竞争模型的背景下允许决策者(或代理人)的出现和消失。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Itzhak Gilboa其他文献

Dynamics of inductive inference in a unified framework
  • DOI:
    10.1016/j.jet.2012.11.004
  • 发表时间:
    2013-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Itzhak Gilboa;Larry Samuelson;David Schmeidler
  • 通讯作者:
    David Schmeidler
Majority vote following a debate
  • DOI:
    10.1007/s00355-003-0243-9
  • 发表时间:
    2004-08-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Itzhak Gilboa;Nicolas Vieille
  • 通讯作者:
    Nicolas Vieille
On the definition of objective probabilities by empirical similarity
  • DOI:
    10.1007/s11229-009-9473-4
  • 发表时间:
    2009-04-07
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Itzhak Gilboa;Offer Lieberman;David Schmeidler
  • 通讯作者:
    David Schmeidler
Subjective Distributions
  • DOI:
    10.1007/s11238-004-2596-7
  • 发表时间:
    2004-06-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Itzhak Gilboa;David Schmeidler
  • 通讯作者:
    David Schmeidler
Rational status quo
  • DOI:
    10.1016/j.jet.2019.02.009
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Itzhak Gilboa;Fan Wang
  • 通讯作者:
    Fan Wang

Itzhak Gilboa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Itzhak Gilboa', 18)}}的其他基金

Collaborative Research: Updating Ambiguous Beliefs: Bayesian and Non-Bayesian Learning
协作研究:更新模糊信念:贝叶斯和非贝叶斯学习
  • 批准号:
    9113108
  • 财政年份:
    1991
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Interpolation, stability, and rationality
职业:插值、稳定、合理
  • 批准号:
    2338345
  • 财政年份:
    2024
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
  • 批准号:
    2419423
  • 财政年份:
    2024
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Standard Grant
Probabilistic approaches to Brauer groups and rationality problems
布劳尔群和理性问题的概率方法
  • 批准号:
    2302231
  • 财政年份:
    2023
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Continuing Grant
From Temporary Rationality to Sustainable Irrationality: Nudging for Lasting Pro-Environmental Behaviour in Hedonic Settings
从暂时理性到可持续非理性:在享乐环境中推动持久的环保行为
  • 批准号:
    2887610
  • 财政年份:
    2023
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Studentship
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
  • 批准号:
    2321463
  • 财政年份:
    2023
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Standard Grant
CAREER: The Origins of Discourse: How Children Develop Communicative Rationality Across Three Diverse Societies
职业:话语的起源:儿童如何在三个不同的社会中发展沟通理性
  • 批准号:
    2237075
  • 财政年份:
    2023
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
  • 批准号:
    2321464
  • 财政年份:
    2023
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Standard Grant
New paradigm reinforcement learning equipped with natural rationality deriving from sociality and reward transformation
具有源于社会性和奖励转化的自然理性的强化学习新范式
  • 批准号:
    23H03469
  • 财政年份:
    2023
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cognitive Processes Supporting Epistemic Rationality in Belief Formation and Revision
支持信念形成和修正中认知理性的认知过程
  • 批准号:
    RGPIN-2017-03758
  • 财政年份:
    2022
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Discovery Grants Program - Individual
Where does 'witchcraft' come into the crime?: Rationality for judicial decisions in former British African states.
“巫术”在哪里参与犯罪?:前英属非洲国家司法判决的合理性。
  • 批准号:
    22H00035
  • 财政年份:
    2022
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了