Some Issue on Modelling Unobservable Variables
不可观测变量建模的一些问题
基本信息
- 批准号:8821205
- 负责人:
- 金额:$ 8.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-03-15 至 1992-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Models based on variables which are inherently unobservable are found very often in economics, psychology, and other social sciences. They might arise from errors in the data being analyzed, or because the behavioral responses of agents are in part determined by characteristics which cannot be observed or measured. Obtaining meaningful insight from models in which unobservable variables play a role requires either expanding the data set with more precise measurement or developing an analytical framework to extract the relevant information on the unobserved variables from the existing data. The former is often too costly or even impossible, particularly when large Federal statistical data sets are being studied. The project examines two analytical models widely used in econometric studies using Federal data, namely the errors-in-variables model and the hedonic model. The errors-in-variables model is studied from the standpoint of various assumptions regarding the structure of the errors, and model identification, and statistical inference. Using the hedonic model this project establishes correspondences between the underlying characteristics and the observed variables. It also derives conditions regarding identification, estimation, and interpretation of the coefficients. %%% Models based on variables which are inherently unobservable are found very often in economics, psychology, and other social sciences. They might arise from errors in the data being analyzed, or because the behavioral responses of agents are in part determined by characteristics which cannot be observed or measured. Large Federal data sets, such as those collected by the Bureau of the Census or the Bureau of Labor Statistics, often contain grouped data. For reasons of confidentiality or ease of collection, a household might be asked to list its income range, for instance between $15,000 and $25,000, rather than its exact income. If an econometric analysis uses these data on the assumption that they are precise measurements, the results can be misleading or erroneous. Obtaining meaningful insight from models in which unobservable variables play a role requires either expanding the data set with more precise measurement or developing an analytical framework to extract the relevant information on the unobserved variables from the existing data. The former approach is more desirable, but often too costly, particularly when a researcher is using large Federal statistical data sets. This project focuses on the latter, more analytical strategy. It develops an econometric framework to enhance the reliablity and usefulness of research based on Federal data where latent variable models are appropriate.
基于本质上不可观测的变量的模型在经济学、心理学和其他社会科学中非常常见。它们可能源于正在分析的数据中的错误,或者因为代理人的行为反应在一定程度上是由无法观察或测量的特征决定的。要从不可观测变量发挥作用的模型中获得有意义的见解,需要通过更精确的测量来扩大数据集,或者开发一个分析框架,从现有数据中提取关于不可观测变量的相关信息。前者往往代价太高,甚至是不可能的,特别是在研究大型联邦统计数据集的时候。该项目考察了使用联邦数据进行计量经济学研究中广泛使用的两个分析模型,即变量误差模型和享乐模型。从关于误差结构的各种假设、模型识别和统计推断的角度来研究变量中的误差模型。使用享乐模型,这个项目建立了潜在特征和观察变量之间的对应关系。它还推导出关于系数的识别、估计和解释的条件。基于本质上不可观测的变量的模型在经济学、心理学和其他社会科学中非常常见。它们可能源于正在分析的数据中的错误,或者因为代理人的行为反应在一定程度上是由无法观察或测量的特征决定的。大型联邦数据集,如人口普查局或劳工统计局收集的数据,通常包含分组数据。出于保密或便于收集的原因,一个家庭可能被要求列出其收入范围,例如在15,000美元至25,000美元之间,而不是其确切收入。如果计量经济学分析在假设这些数据是精确测量的情况下使用这些数据,结果可能会产生误导或错误。要从不可观测变量发挥作用的模型中获得有意义的见解,需要通过更精确的测量来扩大数据集,或者开发一个分析框架,从现有数据中提取关于不可观测变量的相关信息。前一种方法更可取,但往往成本太高,特别是当研究人员使用大型联邦统计数据集时。本项目侧重于后一种更具分析性的策略。它开发了一个计量经济学框架,以增强基于潜在变量模型适用的联邦数据的研究的可靠性和有用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheng Hsiao其他文献
A selective review of panel approaches to construct counterfactuals
- DOI:
10.1007/s00181-025-02738-9 - 发表时间:
2025-04-24 - 期刊:
- 影响因子:1.900
- 作者:
Cheng Hsiao - 通讯作者:
Cheng Hsiao
First difference or forward demeaning: Implications for the method of moments estimators
一阶差分或前向贬义:对矩估计器方法的影响
- DOI:
10.1080/07474938.2017.1307594 - 发表时间:
2017-03 - 期刊:
- 影响因子:1.2
- 作者:
Cheng Hsiao;Qiankun Zhou - 通讯作者:
Qiankun Zhou
Rejoinder on: Panel data analysis—advantages and challenges
- DOI:
10.1007/s11749-007-0055-9 - 发表时间:
2007-03-10 - 期刊:
- 影响因子:1.300
- 作者:
Cheng Hsiao - 通讯作者:
Cheng Hsiao
Estimation of fixed effects dynamic panel data models: Linear differencing or conditional expectation
固定效应动态面板数据模型的估计:线性差分或条件期望
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.2
- 作者:
Cheng Hsiao - 通讯作者:
Cheng Hsiao
JIVE FOR PANEL DYNAMIC SIMULTANEOUS EQUATIONS MODELS
用于面板动态联立方程模型的 Jive
- DOI:
10.1017/s0266466617000421 - 发表时间:
2017-07 - 期刊:
- 影响因子:0.8
- 作者:
Cheng Hsiao;Qiankun Zhou - 通讯作者:
Qiankun Zhou
Cheng Hsiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cheng Hsiao', 18)}}的其他基金
Some Issues on Modeling Unobservables, IV
不可观测量建模的一些问题,IV
- 批准号:
9619330 - 财政年份:1997
- 资助金额:
$ 8.66万 - 项目类别:
Continuing Grant
Some Issues on Modeling Unobservable Variables, III
不可观测变量建模的一些问题,III
- 批准号:
9409540 - 财政年份:1994
- 资助金额:
$ 8.66万 - 项目类别:
Standard Grant
Econometric Methods For Models in Which Insufficient Information Precludes Application of Previously Developed Techniques
信息不足阻碍先前开发技术应用的模型的计量经济学方法
- 批准号:
7518919 - 财政年份:1975
- 资助金额:
$ 8.66万 - 项目类别:
Standard Grant
相似海外基金
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 8.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
legAIstatus - Analyses of status of slaves in Roman law - resolution for inventorship/ ownership issue of AI systems in patent law
legAIstatus - 罗马法中奴隶地位分析 - 专利法中人工智能系统发明人/所有权问题的解决
- 批准号:
EP/Y030370/1 - 财政年份:2023
- 资助金额:
$ 8.66万 - 项目类别:
Fellowship
Special issue of Oceanography titled, A Vision for Capacity Sharing in the Ocean Sciences
海洋学特刊,题为“海洋科学能力共享的愿景”
- 批准号:
2318309 - 财政年份:2023
- 资助金额:
$ 8.66万 - 项目类别:
Standard Grant
Locblock turning a plastic and non-recyclable textile waste issue into a housing solution: Phase 1 - Develop a new fire-rated and structural recycled plastic
Locblock 将塑料和不可回收的纺织废物问题转化为住房解决方案:第一阶段 - 开发新的防火和结构回收塑料
- 批准号:
10074894 - 财政年份:2023
- 资助金额:
$ 8.66万 - 项目类别:
Grant for R&D
REQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS RFP 75N95022R00031 WITH THE UNIVERSITY OF WASHINGTON
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑倡议细胞阿特拉斯网络 (BICAN) 与华盛顿大学的测序核心合同 RFP 75N95022R00031
- 批准号:
10931180 - 财政年份:2023
- 资助金额:
$ 8.66万 - 项目类别:
Loneliness as a public health issue in context: capturing experiences and social determinants of loneliness in diverse young adults in London & Tokyo
孤独作为背景下的公共卫生问题:捕捉伦敦不同年轻人孤独的经历和社会决定因素
- 批准号:
2887238 - 财政年份:2023
- 资助金额:
$ 8.66万 - 项目类别:
Studentship
EAGER: Resolving the issue of pairing symmetry in Sr2RuO4
EAGER:解决 Sr2RuO4 中的配对对称性问题
- 批准号:
2312899 - 财政年份:2023
- 资助金额:
$ 8.66万 - 项目类别:
Standard Grant
Locblock turning a plastic and non-recyclable textile waste issue into a housing solution: Phase 2 - System and prototype completion
Locblock 将塑料和不可回收的纺织废物问题转化为住房解决方案:第二阶段 - 系统和原型完成
- 批准号:
10076008 - 财政年份:2023
- 资助金额:
$ 8.66万 - 项目类别:
Launchpad
How post-industrial issue positions and salience shape the electoral trends of Western European parties
后工业化问题的立场和重要性如何塑造西欧政党的选举趋势
- 批准号:
2901818 - 财政年份:2023
- 资助金额:
$ 8.66万 - 项目类别:
Studentship
REQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS WITH THE BROAD INSTITUTE
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑计划细胞阿特拉斯网络 (BICAN) 与布罗德研究所签订测序核心合同
- 批准号:
10931182 - 财政年份:2023
- 资助金额:
$ 8.66万 - 项目类别: