Computational Methods for Parametrized Equations
参数化方程的计算方法
基本信息
- 批准号:8907654
- 负责人:
- 金额:$ 21.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-10-01 至 1993-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this investigation is to continue work on the development of effective computational methods for nonlinear, parameter dependent equations. The equations involve a state variable, which is usually infinite dimensional, a finite dimensional parameter vector. Under appropriate conditions, the solutions of the state space and the parameter space. Problems of this type arise in numerous, practically important equilibrium studies in physics and engineering. For example, the equation may describe the equilibrium positions of a mechanical structure, in which case the state variable characterizes, say, the deformations while the parameter vector incorporates information about the load points, load directions, material properties, geometrical data, etc. In this, as in most applications of this type, interest centers rarely on the computation of a few solutions for fixed choices of the parameters, but instead one has to address, what is often called, the sensitivity problem. This concerns the question of the change of the solutions under variation of the parameters. In particular, one needs to determine those values of the parameters where the character of the solution changes, for instance, where stability is lost. Thus, in essence, the sensitivity problem requires a computational study of the shape and properties of the solution manifold. The assumption of the existence of the solution manifold presumes that the problem has been suitably unfolded. This turns out to be a very natural assumption in most applications and to have considerable advantages for the numerical solution of parametrized equation. Up to now, the numerical analysis literature has paid little attention to this differential-geometric aspect of multi-parameter nonlinear equations. But a consistent utilization of differential-geometric concepts and results can provide a powerful tool in the development of effective computational methods for a unified analysis of the solution properties of the parametrized equation.
本研究的目的是继续研究非线性、参数相关方程的有效计算方法。这些方程包含一个状态变量,通常是无限维的,一个有限维的参数向量。在适当的条件下,得到了状态空间和参数空间的解。这类问题出现在物理和工程中许多实际重要的平衡研究中。例如,该方程可以描述机械结构的平衡位置,在这种情况下,状态变量表征,例如,变形,而参数向量包含有关载荷点,载荷方向,材料特性,几何数据等信息。在这种情况下,正如在这种类型的大多数应用中一样,兴趣很少集中在计算固定参数选择的几个解上,而是必须解决通常称为灵敏度问题的问题。这涉及到参数变化时解的变化问题。特别是,需要确定解的性质发生变化时的参数值,例如,当稳定性丧失时。因此,本质上,灵敏度问题要求对解流形的形状和性质进行计算研究。解流形存在的假设假定问题已适当展开。在大多数应用中,这是一个非常自然的假设,对于参数化方程的数值解具有相当大的优势。到目前为止,数值分析文献很少关注多参数非线性方程的微分几何方面。但是,对微分几何概念和结果的一致利用可以为统一分析参数化方程解的性质提供有效的计算方法的发展的有力工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Werner Rheinboldt其他文献
Werner Rheinboldt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Werner Rheinboldt', 18)}}的其他基金
Computational Methods for Parametrized Equations
参数化方程的计算方法
- 批准号:
9203488 - 财政年份:1992
- 资助金额:
$ 21.75万 - 项目类别:
Continuing Grant
Acquisition of Mathematical Sciences Research Equipment
数学科学研究设备购置
- 批准号:
8403659 - 财政年份:1984
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Workshop on Future Directions in Computational Mathematics, Algorithms and Scientific Software
数学科学:计算数学、算法和科学软件未来方向研讨会
- 批准号:
8503483 - 财政年份:1984
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
Computational Methods for Parametrized Equations
参数化方程的计算方法
- 批准号:
8309926 - 财政年份:1983
- 资助金额:
$ 21.75万 - 项目类别:
Continuing Grant
Computatiional Continuation Processes For the Solution of Nonlinear Systems of Equations
非线性方程组求解的计算延拓过程
- 批准号:
7805299 - 财政年份:1978
- 资助金额:
$ 21.75万 - 项目类别:
Continuing Grant
The Numerical Solution of Nonlinear Systems of Equations
非线性方程组的数值解
- 批准号:
7203721 - 财政年份:1973
- 资助金额:
$ 21.75万 - 项目类别:
Continuing Grant
Course Cont Impvmnt, College-Mathematics
课程继续实施,大学数学
- 批准号:
7207370 - 财政年份:1972
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 21.75万 - 项目类别:
Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
- 批准号:
2686844 - 财政年份:2025
- 资助金额:
$ 21.75万 - 项目类别:
Studentship
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
- 批准号:
DE240100316 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Discovery Early Career Researcher Award
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
- 批准号:
2907463 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Studentship
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
- 批准号:
EP/Z532976/1 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Research Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
- 批准号:
2422291 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Continuing Grant