RIA: Handwritten Word Recognition Using First and Second Order Hidden Markov Model

RIA:使用一阶和二阶隐马尔可夫模型的手写词识别

基本信息

  • 批准号:
    8908082
  • 负责人:
  • 金额:
    $ 5.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1989
  • 资助国家:
    美国
  • 起止时间:
    1989-06-01 至 1992-01-31
  • 项目状态:
    已结题

项目摘要

A hidden Markov model (HMM) is a doubly stochastic process with an underlying stochastic process that is not observable, i.e., states are hidden, but can only be observed through another set of stochastic processes that produce the observable sequence of symbols. In this work, the handwritten script recognition problem is modeled in the framework of HMM. For English text, which is the focus of the present research, the states are identified with the letters of the alphabet, and the optimum symbols are generated by means of experimental study. Fifteen features (some old, some new) are used for this task. Both the first and second order hidden Markov models are used for the recognition task. Using the existing statistical knowledge of the English language as in Cryptography etc., the calculation scheme of the model parameters are immensely simplified for the first order model. Extending these results and through an exhaustive dictionary search, probabilities of the second order model are calculated. Viterbi algorithm is used to recognize the single best optimal state sequence, i.e., sequence of letters consisting the word. The modification of the recognition algorithm to accommodate context information is also researched. Finally, experimental results for the first and second order models are provided.
隐马尔可夫模型(HMM)是一个双随机过程, 不可观测的潜在随机过程,即,国 隐藏,但只能通过另一组随机观察 产生可观察的符号序列的过程。 在这 工作中,手写体脚本识别问题建模在 HMM框架。 对于英文文本,这是目前的重点 研究中,国家是用字母表中的字母来识别的, 并通过实验研究产生了最佳符号。 15个特征(一些旧的,一些新的)用于此任务。 一阶和二阶隐马尔可夫模型都用于 识别任务 利用现有的统计知识, 英语,如密码学等,的计算方案, 对于一阶模型,模型参数被极大地简化。 扩展这些结果,并通过详尽的字典搜索, 计算二阶模型的概率。 维特比 算法用于识别单个最优状态序列, 也就是说,组成单词的字母序列。 的修改 还 研究过了 最后,第一和第二个实验结果 提供了订单模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amlan Kundu其他文献

Use of Hidden Markov Model as Internet Banking Fraud Detection
利用隐马尔可夫模型进行网上银行欺诈检测
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sunil S. Mhamane;L. Lobo;Abhinav Srivastava;Amlan Kundu;S. Sural;O. Dandash;Phu Dung Le;Bala Srinivasan;Qinghua Zhang;Yiling Wang;Phu Dung Leand
  • 通讯作者:
    Phu Dung Leand
Database intrusion detection using sequence alignment
Two-Stage Credit Card Fraud Detection Using Sequence Alignment
使用序列比对的两阶段信用卡欺诈检测
  • DOI:
    10.1007/11961635_18
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amlan Kundu;S. Sural;A. Majumdar
  • 通讯作者:
    A. Majumdar

Amlan Kundu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Development and improvement of a descriptive automatic scoring system incorporating handwritten character recognition
结合手写字符识别的描述性自动评分系统的开发和改进
  • 批准号:
    23H03511
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Realization of Pre-Processing to Recognize Freely Handwritten Answer Characters to Graded Answer Images
自由手写答案字符识别对分级答案图像预处理的实现
  • 批准号:
    23K02675
  • 财政年份:
    2023
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adopting Transkribus in the National Library of Scotland: Understanding how Handwritten Text Recognition Will Change Management and Use of Digitised M
苏格兰国家图书馆采用 Transkribus:了解手写文本识别将如何改变数字化 M 的管理和使用
  • 批准号:
    2422919
  • 财政年份:
    2020
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Studentship
Preprocessing to enable recognition of handwritten and overwritten characters
预处理以实现手写和覆盖字符的识别
  • 批准号:
    20K03143
  • 财政年份:
    2020
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of logical thinking ability from online handwritten data
从在线手写数据中识别逻辑思维能力
  • 批准号:
    20H04292
  • 财政年份:
    2020
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on practical Japanese handwritten character recognition method for application to deep learning
面向深度学习的实用日语手写字符识别方法研究
  • 批准号:
    20K11868
  • 财政年份:
    2020
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhancement of handwritten mathematical expression recognition through establishment of multi-dimensional structural analysis
通过建立多维结构分析增强手写数学表达式识别
  • 批准号:
    19H01117
  • 财政年份:
    2019
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Detection of unnatural writing behavior by analyzing the appearance of handwritten strokes
通过分析手写笔画的外观来检测不自然的书写行为
  • 批准号:
    18K11516
  • 财政年份:
    2018
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An artwork production support system from handwritten line drawings
手写线稿的艺术品制作支持系统
  • 批准号:
    17K00376
  • 财政年份:
    2017
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on an intelligent support system for mathematics class using automatic recognition of handwritten mathematical expressions and geometric figures
自动识别手写数学表达式和几何图形的数学课堂智能支持系统研究
  • 批准号:
    17K01133
  • 财政年份:
    2017
  • 资助金额:
    $ 5.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了