Adaptive Solution of Partial Differential Equations on Parallel Computers Using An Equational Language
使用方程语言在并行计算机上自适应求解偏微分方程
基本信息
- 批准号:8920694
- 负责人:
- 金额:$ 6.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-04-15 至 1992-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop a software environment where scientists and engineers need not know intricate numerical and programming details in order to efficiently solve computational problems involving partial differential equations on parallel computers. The basic premise is that numerical software consists of two parts: a core which is invariant for a group of related methods designed for different architectures and an architecturally dependent part. Traditional languages tend to cloud common features of the software and interweave the two parts. This project aims at building a new language based on the assertive programming paradigm and at searching for unified principles for designing efficient parallel procedures for solving systems of partial differential equations. In the assertive programming paradigm, computations are specified as sets of assertions about properties of the solution, and not as detailed procedural implementations. Architecture and implementation language-dependent procedures are automatically generated from the assertive description. Assertive programming for parallel scientific processing is supported by equational languages in which assertions are expressed as algebraic equations. In this research, an Equational Programming Language (EPL) system is being built to (i) provide the tools for users to specify parallel numerical algorithms in an architecture-independent way and (ii) develop tools for automatic generation of architecturally dependent parts of those numerical algorithms. Adaptive methods for partial differential equations use local information about the computed solution and its discretization error to automatically refine meshes, redistribute meshes, and/or vary the numerical method in different parts of the problem domain. The project continues the investigation of parallel adaptive techniques for two- and three- dimensional partial differential systems. Particular studies include dynamic scheduling and load balancing techniques based on using local error estimates to predict the work remaining to solve a problem, parallel iterative techniques for algebraic systems, and parallel algorithms for finite quadtree and octree structured meshes. Newly designed procedures will be implemented using the EPL system.
这个项目的目标是开发一个软件环境, 科学家和工程师不需要知道复杂的数字和 编程细节,以有效地解决计算 偏微分方程并行问题 电脑 基本前提是数值软件包括 两部分:一个核心,它对于一组相关的方法是不变的 设计用于不同的架构, 部分 传统的语言倾向于掩盖 软件和交织的两部分。 该项目旨在建设 一种基于断言编程范式的新语言, 寻找设计高效并行的统一原则 偏微分方程组的求解程序。 在断言编程范例中,计算被指定为 关于解决方案属性的断言集,而不是作为 详细的程序实现。 体系结构和实现 依赖于语言的过程是从 武断的描述 并行科学研究的断言编程 处理由等式语言支持,其中断言 用代数方程表示。 在这项研究中,一个方程式 编程语言(EPL)系统正在建立,以(i)提供 工具,供用户指定并行数值算法在一个 架构独立的方式和(ii)开发工具,自动 生成那些数字的架构依赖部分, 算法 偏微分方程的自适应方法使用局部 关于计算解及其离散化误差的信息 自动细化网格、重新分布网格和/或改变 数值方法在问题域的不同部分。 的 项目继续研究并行自适应技术 对于二维和三维偏微分系统。 具体的研究包括动态调度和负载平衡 基于使用局部误差估计来预测工作的技术 剩下的就是解决问题,并行迭代技术 代数系统和有限四叉树的并行算法, 八叉树结构网格。 新设计的程序将 使用EPL系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Flaherty其他文献
High-resolution ice cores from US ITASE (West Antarctica): development and validation of chronologies and determination of precision and accuracy
来自美国 ITASE(南极洲西部)的高分辨率冰芯:年表的开发和验证以及精度和准确度的确定
- DOI:
10.3189/172756405781813311 - 发表时间:
2005 - 期刊:
- 影响因子:2.9
- 作者:
E. Steig;P. Mayewski;D. Dixon;S. Kaspari;M. Frey;D. Schneider;Stephen A. Arcone;G. Hamilton;V. B. Spikes;M. Albert;D. Meese;A. Gow;C. Shuman;J. White;S. Sneed;Joseph Flaherty;M. Wumkes - 通讯作者:
M. Wumkes
The Quality of Mental Health Care for African Americans
- DOI:
10.1023/b:medi.0000005485.06068.43 - 发表时间:
2003-12-01 - 期刊:
- 影响因子:1.800
- 作者:
Jerome Richardson;Tanya Anderson;Joseph Flaherty;Carl Bell - 通讯作者:
Carl Bell
Joseph Flaherty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Flaherty', 18)}}的其他基金
The Pee Dee Scholars: Forging STEM Transfer Success in the Pee Dee Region of South Carolina
皮迪学者:在南卡罗来纳州皮迪地区打造 STEM 转移成功
- 批准号:
2130351 - 财政年份:2021
- 资助金额:
$ 6.4万 - 项目类别:
Standard Grant
Collaborative Research: Institutional Collaboration to Recruit, Retain and Graduate Low-Income Students in Biology
合作研究:机构合作招募、留住和毕业低收入生物学学生
- 批准号:
1742366 - 财政年份:2018
- 资助金额:
$ 6.4万 - 项目类别:
Standard Grant
CAREER: Identification and Characterization of Genes Involved in Asexual Reproduction in Filamentous Fungi
职业:丝状真菌无性繁殖相关基因的鉴定和表征
- 批准号:
0845324 - 财政年份:2009
- 资助金额:
$ 6.4万 - 项目类别:
Standard Grant
IMACS Workshop on Adaptive Methods for Partial Differential Equations
IMACS 偏微分方程自适应方法研讨会
- 批准号:
0228309 - 财政年份:2002
- 资助金额:
$ 6.4万 - 项目类别:
Standard Grant
Software for Transient Parallel Adaptive Finite Element Computation
瞬态并行自适应有限元计算软件
- 批准号:
9720227 - 财政年份:1997
- 资助金额:
$ 6.4万 - 项目类别:
Continuing Grant
University - Industry Cooperative Research in Mathematical Sciences: Industry-Based Grad. Research Fellowship for Finite Element Anaylsis of Micro-Electro-Mechanical Systems
数学科学方面的大学-行业合作研究:基于行业的研究生。
- 批准号:
9508656 - 财政年份:1995
- 资助金额:
$ 6.4万 - 项目类别:
Standard Grant
Domain Specific Parallel Adaptive Scientific Computation
特定领域并行自适应科学计算
- 批准号:
9216053 - 财政年份:1993
- 资助金额:
$ 6.4万 - 项目类别:
Continuing Grant
Parallel Adaptive Finite Element Methods for Parabolic Partial Differential Equations
抛物型偏微分方程的并行自适应有限元方法
- 批准号:
9211148 - 财政年份:1992
- 资助金额:
$ 6.4万 - 项目类别:
Standard Grant
Image Processing and Computing Environments For MathematicalApplications
数学应用的图像处理和计算环境
- 批准号:
8805910 - 财政年份:1988
- 资助金额:
$ 6.4万 - 项目类别:
Continuing Grant
Adaptive Solution of Partial Differential Equations on Parallel Computers Using an Equational Language
使用方程语言在并行计算机上自适应求解偏微分方程
- 批准号:
8613353 - 财政年份:1987
- 资助金额:
$ 6.4万 - 项目类别:
Standard Grant
相似国自然基金
相似海外基金
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2022
- 资助金额:
$ 6.4万 - 项目类别:
Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2021
- 资助金额:
$ 6.4万 - 项目类别:
Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2020
- 资助金额:
$ 6.4万 - 项目类别:
Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2019
- 资助金额:
$ 6.4万 - 项目类别:
Discovery Grants Program - Individual
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2018
- 资助金额:
$ 6.4万 - 项目类别:
Discovery Grants Program - Individual
Implementation and analysis of adaptive algorithms for the numerical solution of partial differential equations
偏微分方程数值求解自适应算法的实现与分析
- 批准号:
311796-2008 - 财政年份:2012
- 资助金额:
$ 6.4万 - 项目类别:
Discovery Grants Program - Individual
Implementation and analysis of adaptive algorithms for the numerical solution of partial differential equations
偏微分方程数值求解自适应算法的实现与分析
- 批准号:
311796-2008 - 财政年份:2011
- 资助金额:
$ 6.4万 - 项目类别:
Discovery Grants Program - Individual
EAPSI: Application of Adaptive Mesh Refinement to the Solution of Stiff Partial Differential Equation
EAPSI:自适应网格细化在求解刚性偏微分方程中的应用
- 批准号:
1107768 - 财政年份:2011
- 资助金额:
$ 6.4万 - 项目类别:
Fellowship Award
Implementation and analysis of adaptive algorithms for the numerical solution of partial differential equations
偏微分方程数值求解自适应算法的实现与分析
- 批准号:
311796-2008 - 财政年份:2010
- 资助金额:
$ 6.4万 - 项目类别:
Discovery Grants Program - Individual
Implementation and analysis of adaptive algorithms for the numerical solution of partial differential equations
偏微分方程数值求解自适应算法的实现与分析
- 批准号:
311796-2008 - 财政年份:2009
- 资助金额:
$ 6.4万 - 项目类别:
Discovery Grants Program - Individual