IMACS Workshop on Adaptive Methods for Partial Differential Equations
IMACS 偏微分方程自适应方法研讨会
基本信息
- 批准号:0228309
- 负责人:
- 金额:$ 0.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2002-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Adaptive methods for partial differential equations (PDEs) are the most effective computational approach for a large class of PDEs that arise in many important applications in science and engineering. This area has grown steadily during the past two decades. This workshop will bring together leading researchers from around the world to address both theoretical and computational aspects of adaptive methods for PDEs and to foster stronger collaboration between mathematicians, engineers and scientists. Topics include a posteriori error estimation, adaptive h-p refinement, adaptivity with complex geometry, implementation of adaptive codes, moving mesh techniques and applications, adaptive spectral methods, nonlinear analysis, adaptive modeling and applications of adaptive methods. This project will supplement Canadian funding to support the IMACS Workshop on Adaptive Methods for Partial Differential Equations to be held at the Fields Institute of Mathematics in Toronto in August 2002. IMACS is the International Association for Mathematics and Computers in Simulation. This workshop is part of a year-long program focusing on numerical computation - the first ever at the Fields Institute. The program recognizes the central importance of numerical analysis in advancing computational science and engineering, and seeks to expand interactions among mathematicians, scientists, and engineers. The funds will be used to support travel expenses of researchers from the U.S., including invited speakers and young researchers at the graduate or postdoctoral level. Topics discussed at the workshop will be far ranging but will include optimal adaptive strategies, high-performance computation, error estimation, implementation issues, geometrical considerations, and applications. Applications will involve fluid flow, optimal design and manufacturing, electromagnetic phenomena, and biomechanics and biomaterials.
偏微分方程(PDEs)的自适应方法是求解一类重要的偏微分方程最有效的方法。这一地区在过去二十年中稳步增长。本次研讨会将汇集来自世界各地的顶尖研究人员,讨论pde自适应方法的理论和计算方面的问题,并促进数学家、工程师和科学家之间更强有力的合作。主题包括后验误差估计、自适应hp细化、复杂几何的自适应、自适应代码的实现、移动网格技术和应用、自适应光谱方法、非线性分析、自适应建模和自适应方法的应用。这个项目将补充加拿大的资金,以支持将于2002年8月在多伦多菲尔兹数学研究所举行的IMACS偏微分方程自适应方法讲习班。IMACS是国际模拟数学和计算机协会。这个研讨会是一个为期一年的专注于数值计算的项目的一部分——这是菲尔兹研究所有史以来的第一次。该计划认识到数值分析在推进计算科学和工程中的核心重要性,并寻求扩大数学家,科学家和工程师之间的互动。这笔资金将用于支持来自美国的研究人员的旅行费用,包括邀请演讲者和研究生或博士后水平的年轻研究人员。在研讨会上讨论的主题将是广泛的,但将包括最优自适应策略,高性能计算,误差估计,实现问题,几何考虑和应用。应用将涉及流体流动、优化设计和制造、电磁现象、生物力学和生物材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Flaherty其他文献
High-resolution ice cores from US ITASE (West Antarctica): development and validation of chronologies and determination of precision and accuracy
来自美国 ITASE(南极洲西部)的高分辨率冰芯:年表的开发和验证以及精度和准确度的确定
- DOI:
10.3189/172756405781813311 - 发表时间:
2005 - 期刊:
- 影响因子:2.9
- 作者:
E. Steig;P. Mayewski;D. Dixon;S. Kaspari;M. Frey;D. Schneider;Stephen A. Arcone;G. Hamilton;V. B. Spikes;M. Albert;D. Meese;A. Gow;C. Shuman;J. White;S. Sneed;Joseph Flaherty;M. Wumkes - 通讯作者:
M. Wumkes
The Quality of Mental Health Care for African Americans
- DOI:
10.1023/b:medi.0000005485.06068.43 - 发表时间:
2003-12-01 - 期刊:
- 影响因子:1.800
- 作者:
Jerome Richardson;Tanya Anderson;Joseph Flaherty;Carl Bell - 通讯作者:
Carl Bell
Joseph Flaherty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Flaherty', 18)}}的其他基金
The Pee Dee Scholars: Forging STEM Transfer Success in the Pee Dee Region of South Carolina
皮迪学者:在南卡罗来纳州皮迪地区打造 STEM 转移成功
- 批准号:
2130351 - 财政年份:2021
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
Collaborative Research: Institutional Collaboration to Recruit, Retain and Graduate Low-Income Students in Biology
合作研究:机构合作招募、留住和毕业低收入生物学学生
- 批准号:
1742366 - 财政年份:2018
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
CAREER: Identification and Characterization of Genes Involved in Asexual Reproduction in Filamentous Fungi
职业:丝状真菌无性繁殖相关基因的鉴定和表征
- 批准号:
0845324 - 财政年份:2009
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
Software for Transient Parallel Adaptive Finite Element Computation
瞬态并行自适应有限元计算软件
- 批准号:
9720227 - 财政年份:1997
- 资助金额:
$ 0.75万 - 项目类别:
Continuing Grant
University - Industry Cooperative Research in Mathematical Sciences: Industry-Based Grad. Research Fellowship for Finite Element Anaylsis of Micro-Electro-Mechanical Systems
数学科学方面的大学-行业合作研究:基于行业的研究生。
- 批准号:
9508656 - 财政年份:1995
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
Domain Specific Parallel Adaptive Scientific Computation
特定领域并行自适应科学计算
- 批准号:
9216053 - 财政年份:1993
- 资助金额:
$ 0.75万 - 项目类别:
Continuing Grant
Parallel Adaptive Finite Element Methods for Parabolic Partial Differential Equations
抛物型偏微分方程的并行自适应有限元方法
- 批准号:
9211148 - 财政年份:1992
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
Adaptive Solution of Partial Differential Equations on Parallel Computers Using An Equational Language
使用方程语言在并行计算机上自适应求解偏微分方程
- 批准号:
8920694 - 财政年份:1990
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
Image Processing and Computing Environments For MathematicalApplications
数学应用的图像处理和计算环境
- 批准号:
8805910 - 财政年份:1988
- 资助金额:
$ 0.75万 - 项目类别:
Continuing Grant
Adaptive Solution of Partial Differential Equations on Parallel Computers Using an Equational Language
使用方程语言在并行计算机上自适应求解偏微分方程
- 批准号:
8613353 - 财政年份:1987
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
相似海外基金
WORKSHOP: The Nexus of Climate Data, Insurance, and Adaptive Capacity: November 2018 - Asheville, NC
研讨会:气候数据、保险和适应能力的关系:2018 年 11 月 - 北卡罗来纳州阿什维尔
- 批准号:
1824394 - 财政年份:2018
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
Synthesis and Design Workshop: Weaving the Fabric of Adaptive STEM Learning Environments Across Domains and Settings
综合与设计研讨会:跨领域和设置编织自适应 STEM 学习环境的结构
- 批准号:
1825070 - 财政年份:2018
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
Workshop to Establish a Collaborative Global Experiment to Understand Coregonid Adaptive Response to Changing Thermal Regimes
建立全球协作实验以了解 Coregonid 对不断变化的热状态的适应性响应的研讨会
- 批准号:
1829451 - 财政年份:2018
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
Multi-discipliary Workshop on Adaptive Optics: Analysis, Methods and Systems
自适应光学多学科研讨会:分析、方法和系统
- 批准号:
1639052 - 财政年份:2016
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
International Workshop on Recent Developments in the Adaptive Solution of PDEs, August 17-22, 2014
偏微分方程自适应解决方案最新发展国际研讨会,2014 年 8 月 17-22 日
- 批准号:
1438161 - 财政年份:2014
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
Computing with Biomolecules: From Network Motifs to Complex and Adaptive Systems: ALife14 Workshop
生物分子计算:从网络基序到复杂自适应系统:ALife14 研讨会
- 批准号:
1440361 - 财政年份:2014
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
Workshop: Integrative organismal biology of adaptive processes, September 19-20, 2011, Arlington, VA
研讨会:适应过程的综合有机生物学,2011 年 9 月 19-20 日,弗吉尼亚州阿灵顿
- 批准号:
1145241 - 财政年份:2011
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
WORKSHOP: Complex Adaptive Systems: Resilience, Robustness, and Evolvability
研讨会:复杂自适应系统:弹性、鲁棒性和可进化性
- 批准号:
1052901 - 财政年份:2010
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
ESF-NSF Workshop on the Applications of Adaptive Structures and Materials to Sustainable Energy and the Built Environment; held Paris, FR, October 15-17, 2008
ESF-NSF 适应性结构和材料在可持续能源和建筑环境中的应用研讨会;
- 批准号:
0844555 - 财政年份:2008
- 资助金额:
$ 0.75万 - 项目类别:
Standard Grant
Bristol Adaptive Structures Workshop 2006
布里斯托尔自适应结构研讨会 2006
- 批准号:
EP/D041791/1 - 财政年份:2006
- 资助金额:
$ 0.75万 - 项目类别:
Research Grant