Control of Nonstationary Systems Using Information Preserving Neural Networks
使用信息保存神经网络控制非平稳系统
基本信息
- 批准号:9008596
- 负责人:
- 金额:$ 12.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-10-15 至 1993-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Pattern recognition based control methods can produce stable and robust performance in a range of applications and these methods can be designed such that relatively little effort or expertise is required on the part of an industrial practitioner for implementation. Artificial neural nets (ANNs) are well suited for pattern recognition applications. A strength of ANNs are their ability to interpolate and generalize pattern classifications, consequently they hold promise as an improved framework for pattern based controller design. For example, ANNs can be trained to learn a process input - output relationship using historical plant data, and can then be installed online in the role of the internal model of an adaptive controller. Another example is training ANNs directly in the error feedback relationship of a process and then using the ANN as the controller itself. To maintain an accurate description, ANN based controller architectures must provide sufficient degrees of freedom to ensure plasticity, thus permitting system behaviors never previously experienced by the controller to be properly addressed. The research project involves the use of pattern recognition to identify and represent current process characteristics while satisfying these requirements. The focus of this work is the study of control systems that (1) are autonomous in their decision making for design, implementation and adaptation, (2) provide stable and robust performance over a wide range of applications, and (3) succeed in dealing with nonlinear, nonstationary systems. The PIs' method of approach is to study an architecture comprised of several ANNs that each perform specific functions and integrate them into a unified design. These functions include: classification of the patterns exhibited in the recent histories of the manipulated input and controlled output to form a pictorial model of the current process character, translation of this pictorial model into appropriate algorithmic controller parameters for use in any of a number of popular on-line controller algorithms, controller performance evaluation based on the patterns exhibited in the recent history of the controller error, and use of this performance evaluation in the unsupervised training of the pictorial to algorithmic translation mentioned above to improve performance and maintain stability in nonlinear and nonstationary applications. The controller will be tested on a range of single-input single-output process simulations. The processes will display a range of characteristics, including variations in process order, the degree of linearity of the process gain, the variability of the dominant time constant, the size of the signal to noise ratio, and with both slowly and suddenly changing nonstationary changes in the simulated process character.
基于模式识别的控制方法可以产生稳定的 在一系列应用中表现出色, 方法可以被设计成使得相对较少的努力或 专业知识需要在一个工业的一部分, 实践者为落实。 人工神经网络 人工神经网络(ANN)非常适合模式识别应用。 人工神经网络的一个优点是它们的插值能力, 概括模式分类,因此,他们持有 Promise作为基于模式的控制器的改进框架 设计 例如,人工神经网络可以被训练来学习一个过程 使用历史工厂数据的输入-输出关系,以及 然后可以在线安装内部模型的角色 自适应控制器。 另一个例子是训练ANN 直接在过程的误差反馈关系中, 然后使用ANN作为控制器本身。 保持 准确的描述,基于人工神经网络的控制器架构必须 提供足够的自由度以确保可塑性, 从而允许以前从未经历过的系统行为 由控制器来正确地处理。 研究 该项目涉及使用模式识别来识别 并代表当前的工艺特性,同时满足 本款规定而 这项工作的重点是研究控制系统, (1)在设计决策上是自主的, 实现和适应,(2)提供稳定和健壮 性能在广泛的应用,(3)成功 在处理非线性、非平稳系统方面。 私家侦探 一种方法是研究一种由以下部分组成的体系结构 几个ANN,每个执行特定的功能, 将它们整合到统一的设计中。 这些功能 其中包括: 操纵输入和控制的最近历史 输出以形成当前过程的图示模型 性格,将这种绘画模式转化为 适当的算法控制器参数,用于任何 在许多流行的在线控制器算法中, 基于模式的控制器性能评价 在控制器错误的最近历史中显示,并且 在无监督的情况下使用这种性能评估 上述图像到算法翻译的训练 以提高性能并保持稳定, 非线性和非平稳应用。 控制器将 在一系列单输入单输出过程上进行测试 模拟 这些进程将显示一系列 特性,包括工艺顺序的变化, 过程增益的线性度、 主导时间常数,信噪比的大小 比例,以及缓慢和突然变化 模拟过程特性的非平稳变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas Cooper其他文献
Imagination's hand: The role of gesture in design drawing
- DOI:
10.1016/j.destud.2017.11.001 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:
- 作者:
Douglas Cooper - 通讯作者:
Douglas Cooper
Poster 101 Utility of the MPAI-4 for Self-Reported Outcomes in a Military Sample With TBI
- DOI:
10.1016/j.apmr.2011.07.127 - 发表时间:
2011-10-01 - 期刊:
- 影响因子:
- 作者:
Jacob Kean;James Malec;Douglas Cooper;Amy Bowles - 通讯作者:
Amy Bowles
Validity of the CES-D for Depression Screening In Military Personnel With Mild Traumatic Brain Injury
- DOI:
10.1016/j.apmr.2018.08.169 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:
- 作者:
Douglas Cooper;Jan Kennedy;Lisa Lu;Matthew Reid - 通讯作者:
Matthew Reid
Intra-Industry trade and limited producer horizons: An empirical investigation
- DOI:
10.1007/bf02707701 - 发表时间:
1993-06-01 - 期刊:
- 影响因子:1.200
- 作者:
Douglas Cooper;David Greenaway;Anthony J. Rayner - 通讯作者:
Anthony J. Rayner
Paul Gauguin : 45 lettres à Vincent, Théo et Jo van Gogh : Collection Rijksmuseum Vincent van Gogh, Amsterdam
保罗·高更:文森特、泰奥和乔·梵高的 45 封信:阿姆斯特丹国家博物馆文森特·梵高收藏
- DOI:
- 发表时间:
1983 - 期刊:
- 影响因子:0
- 作者:
Paul Gauguin;Vincent van Gogh;Theo van Gogh;Johanna van Gogh;Douglas Cooper;Rijksmuseum Vincent van Gogh - 通讯作者:
Rijksmuseum Vincent van Gogh
Douglas Cooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas Cooper', 18)}}的其他基金
"First in Family" Energy Scholarships for Tech School Grads
为科技学校毕业生提供“家庭第一”能源奖学金
- 批准号:
0965750 - 财政年份:2010
- 资助金额:
$ 12.89万 - 项目类别:
Continuing Grant
New, GK-12: Ingenuity Incubators Develop NSF Fellow Potential and Prepare Tech Students for Engineering
新 GK-12:独创性孵化器开发 NSF 研究员潜力并为工程技术学生做好准备
- 批准号:
0947869 - 财政年份:2010
- 资助金额:
$ 12.89万 - 项目类别:
Continuing Grant
Qualitative Modeling and Machine Learning Applied to the Real-Time Estimation of Chemical Process Dynamics
定性建模和机器学习应用于化学过程动力学的实时估计
- 批准号:
8808596 - 财政年份:1988
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: MRA: Estimating and forecasting nonstationary, multi-scale climate and land-use effects on avian communities
合作研究:MRA:估计和预测非平稳、多尺度气候和土地利用对鸟类群落的影响
- 批准号:
2213566 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Continuing Grant
Behavior of nonstationary solutions to reaction-diffusion systems possessing continua of stationary solutions
具有连续稳定解的反应扩散系统的非平稳解的行为
- 批准号:
23K03176 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: MRA: Estimating and forecasting nonstationary, multi-scale climate and land-use effects on avian communities
合作研究:MRA:估计和预测非平稳、多尺度气候和土地利用对鸟类群落的影响
- 批准号:
2213565 - 财政年份:2023
- 资助金额:
$ 12.89万 - 项目类别:
Continuing Grant
Collaborative Research: Learning Graphical Models for Nonstationary Time Series
协作研究:学习非平稳时间序列的图形模型
- 批准号:
2210675 - 财政年份:2022
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
Improved Characterization of Hydroclimatic Extremes through the Development of a Comprehensive Nonstationary Modelling Framework
通过开发综合非平稳建模框架改进极端水文气候特征
- 批准号:
RGPIN-2017-05558 - 财政年份:2022
- 资助金额:
$ 12.89万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CAS - Climate: Improving Nonstationary Intensity-Duration-Frequency Analysis of Extreme Precipitation by Advancing Knowledge on the Generating Mechanisms
合作研究:CAS - 气候:通过增进对生成机制的认识来改进极端降水的非平稳强度-持续时间-频率分析
- 批准号:
2221803 - 财政年份:2022
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
Collaborative Research: Learning Graphical Models for Nonstationary Time Series
协作研究:学习非平稳时间序列的图形模型
- 批准号:
2210726 - 财政年份:2022
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
CAREER: Learning in Adversarial and Nonstationary Environments
职业:在对抗性和非平稳环境中学习
- 批准号:
2247614 - 财政年份:2022
- 资助金额:
$ 12.89万 - 项目类别:
Continuing Grant
High-Dimensional Nonstationary Processes for Spatial Analysis and Machine Learning
用于空间分析和机器学习的高维非平稳过程
- 批准号:
2210456 - 财政年份:2022
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
nonstationary seasonal economic time series analysis: theory and applications
非平稳季节性经济时间序列分析:理论与应用
- 批准号:
22K01428 - 财政年份:2022
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




