FAW: Algorithmic Complexity in Cryptography, Distributed Computation and Interactive Proofs
FAW:密码学中的算法复杂性、分布式计算和交互式证明
基本信息
- 批准号:9023313
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-11-01 至 1997-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI's primary areas of research interest are interactive proof systems, fault tolerant distributed computation, cryptography. Research is projected in these areas. Interactive proofs, introduced by Goldwasser, Micali and Rackoff, are an extension of the classical NP notion of what can be efficiently verified. Two new ingredients are added: The verifier may be probabilistic and err slightly, and the verifier can interact with the prover. The PI plans to investigate for which class of problems it is sufficient for the prover to be able to solve the problem itself. This problem has direct application to program testing which will be explored. The rapid development of distributed systems raises the natural question of what tasks can be performed by them (especially when faults occur). In the last four years it has been extensively studied, and to a large extent understood, how to perform any probabilistic computation on inputs distributed among processors in a complete network so that no faulty subset of the processors gets any additional information or can disrupt the computation. Cryptography has recently developed from a primarily empirical field of ad-hoc techniques to a formal discipline. This rigor was accompanied by concrete and practical proposals of systems which were shown, under a variety of candidate hard problems from number theory, to comply with the new security standards. At this time in the development of the field two projects should be undertaken: first, the definitions for the different cryptographic tasks must be unified. And second, new hard problems should be found (possibly from coding theory or the geometry of numbers domain) on which to base cryptographic schemes.
PI的主要研究领域是交互式证明 系统、容错分布式计算、密码学。 计划在这些领域进行研究。 交互式证明,介绍了Goldwasser,Micali和Rackoff, 经典NP概念的扩展,即什么可以有效地 验证 添加了两个新成分:验证者可以是 概率和错误轻微,验证者可以与 证明者 PI计划调查这是哪一类问题 这足以让证明者自己解决问题。 这个问题直接应用于程序测试,这将是 探讨了 分布式系统的快速发展, 他们可以执行哪些任务的问题(特别是当 故障发生)。 在过去的四年里, 研究,并在很大程度上理解,如何执行任何 分布在处理器之间的输入的概率计算 完整的网络,使没有故障的处理器子集得到任何 额外的信息或可能会破坏计算。 密码学最近从一个主要经验的领域发展起来 ad-hoc技术到正式的学科。 这种僵硬是 同时提出了具体和切实可行的制度建议, 显示,根据数论的各种候选困难问题, 符合新的安全标准。 这个时候 应开展两个项目:第一, 不同密码任务的定义必须统一。 第二,应该发现新的难题(可能来自编码 理论或数域几何)的基础 密码方案
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shafrira Goldwasser其他文献
Shafrira Goldwasser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shafrira Goldwasser', 18)}}的其他基金
EAGER: Holistic Security for Cloud Computing: Computing on Encrypted Data
EAGER:云计算的整体安全性:加密数据计算
- 批准号:
1347364 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
TC: Small: Securing Programs and Data In Remote and Hostile Environments
TC:小型:保护远程和敌对环境中的程序和数据
- 批准号:
1018064 - 财政年份:2010
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Program Obfuscation: Foundations and Applications
程序混淆:基础和应用
- 批准号:
0635297 - 财政年份:2006
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Learning Fourier Coefficients: Theory and Application
学习傅立叶系数:理论与应用
- 批准号:
0514167 - 财政年份:2005
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Cryptographic Foundations of Cyber Trust
网络信任的密码学基础
- 批准号:
0430450 - 财政年份:2004
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PYI: Mathematical Foundations of Cryptography
PYI:密码学的数学基础
- 批准号:
8657527 - 财政年份:1987
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Computational Complexity Based Cryptography (Computer Research)
基于计算复杂性的密码学(计算机研究)
- 批准号:
8509905 - 财政年份:1985
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
Causality: an algorithmic framework and a computational complexity perspective
因果关系:算法框架和计算复杂性视角
- 批准号:
273587939 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Research Grants
Algebraic Complexity Theory: New Approaches and Algorithmic Applications
代数复杂性理论:新方法和算法应用
- 批准号:
16H05853 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
AF: Small: Connections Between Algorithmic Game Theory, Complexity Theory, and Learning Theory
AF:小:算法博弈论、复杂性理论和学习理论之间的联系
- 批准号:
1524062 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
AF: Medium: Algorithmic Complexity in Computation and Biology
AF:中:计算和生物学中的算法复杂性
- 批准号:
1509178 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: EDS: Systems and Algorithmic Support for Managing Complexity in Sensorized Distributed Systems
CSR:小型:协作研究:EDS:管理传感器化分布式系统复杂性的系统和算法支持
- 批准号:
1526237 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CSR:Small:Collaborative Research:EDS: Systems and Algorithmic Support for Managing Complexity in Sensorized Distributed Systems
CSR:小:协作研究:EDS:管理传感器化分布式系统复杂性的系统和算法支持
- 批准号:
1526841 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Elastic Shape Matching: Theoretical Models and their Algorithmic Complexity
弹性形状匹配:理论模型及其算法复杂性
- 批准号:
254384818 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Research Grants
New Algorithmic Complexity Bounds for Isomorphism Problems over Graphs and other Algebraic Structures
图和其他代数结构上同构问题的新算法复杂度界限
- 批准号:
225911997 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Research Grants
Algorithmic Decision Theory: Using Complexity to Protect Collective Decision-Making Procedures from Manipulative Attacks
算法决策理论:利用复杂性保护集体决策程序免受操纵攻击
- 批准号:
248483686 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Research Grants
Algorithmic engineering and complexity analysis of protocols for consensus
共识协议的算法工程和复杂性分析
- 批准号:
DP110101792 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Discovery Projects