CSR: Small: Collaborative Research: EDS: Systems and Algorithmic Support for Managing Complexity in Sensorized Distributed Systems
CSR:小型:协作研究:EDS:管理传感器化分布式系统复杂性的系统和算法支持
基本信息
- 批准号:1526237
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Commercial buildings, the energy grid and transportation systems are examples of emerging distributed systems that are beginning to be instrumented with a large number of sensors and actuators for sensing ambient environmental conditions, user occupancy, state of energy use etc. The goal of such instrumentation is to improve safety, utility and reduce costs. This is a hard problem due to interaction of humans, devices and networks in an operating environment with uncertainties regarding veracity, timeliness, meaning and value of sensor data. A large number of sensors must be provisioned, monitored and maintained by system operators. This is currently a manual and error prone task. Deploying, managing and adapting a sensorized system at scale become nearly impossible. In the micro-grid testbed of networked buildings used by this project, there are over a hundred thousand alarms raised per day by the first fifty buildings under observation. In reality, despite thousands of reported sensors there are only a few hundred distinct types of sensors. The key is to reduce the complexity of sensorized distributed systems using automated or semi-automated methods to characterize sensors, determine their type based on the sensor data streams and make inferences about the quality of sensor data with minimal operator effort. This project will apply advances in unsupervised machine learning methods to compose, aggregate and interpret sensory data spatially and over time in order to enable robust derivation of semantically useful sensory information for applications and users resulting in better-utilized and robust systems. The intellectual merit of the project lies in building an information flow model, with a systematic capture and use of sensor meta-data that enables algorithmic approaches to data composition and building inferences. Using the proposed learning based automation approach along with programming and runtime support, the project will devise a data-to-decision flow for distributed systems operating across timing and reliability constraints. The project outlines smart buildings as an application driver for the envisioned sensorized distributed system with a working real-life testbed. This research will directly contribute to methods for discovery of tele-connections, such as dependence and causal relationships, between various sensory data streams which are crucial for devising effective control of devices connected to these distributed systems.The broader impacts of the project include advances in the design, deployment, management and programming methodologies for a new class of distributed computing systems that can deal with changing characteristics and topologies of the underlying sensor network. The particular testbed will demonstrate, how such methods can create energy-efficient, sustainable, and comfortable buildings for occupants. A number of educational and outreach activities have been planned to train the next generation talent for the emerging area of a data-driven internet of things. For the broader research community, the project will make available, SensorDepot, an open-source extensible architecture for implementing applications for sensorized distributed systems.
商业建筑、能源网和运输系统是新兴分布式系统的例子,这些系统开始配备大量传感器和执行器,用于感知环境条件、用户占用情况、能源使用状态等。这种仪器的目标是提高安全性、实用性和降低成本。这是一个难题,因为在一个操作环境中,人、设备和网络的相互作用,对传感器数据的准确性、及时性、意义和价值具有不确定性。系统操作员必须配置、监控和维护大量的传感器。目前这是一项手动且容易出错的任务。大规模部署、管理和调整传感器系统几乎是不可能的。在本项目使用的联网建筑微网试验台中,观察的前50栋建筑每天发出的报警次数超过10万次。实际上,尽管有成千上万的传感器被报道,但只有几百种不同类型的传感器。关键是降低传感器分布式系统的复杂性,使用自动化或半自动化的方法来表征传感器,根据传感器数据流确定其类型,并以最小的操作员努力推断传感器数据的质量。该项目将应用无监督机器学习方法的进展,在空间和时间上组合、聚合和解释感官数据,以便为应用程序和用户提供语义上有用的感官信息,从而更好地利用和健壮的系统。该项目的智力价值在于建立信息流模型,系统地捕获和使用传感器元数据,使算法方法能够进行数据组合和构建推断。使用建议的基于学习的自动化方法以及编程和运行时支持,该项目将为跨时间和可靠性约束的分布式系统设计一个数据到决策流。该项目概述了智能建筑作为设想的传感器分布式系统的应用程序驱动程序,具有工作的现实生活测试平台。这项研究将直接有助于发现远程连接的方法,例如各种感官数据流之间的依赖和因果关系,这些数据流对于设计连接到这些分布式系统的设备的有效控制至关重要。该项目的更广泛影响包括在设计、部署、管理和编程方法方面的进步,这种新型分布式计算系统可以处理底层传感器网络不断变化的特征和拓扑结构。这个特殊的试验台将展示这些方法如何为居住者创造节能、可持续和舒适的建筑。已计划开展一系列教育和推广活动,为数据驱动的物联网新兴领域培养下一代人才。对于更广泛的研究社区,该项目将提供SensorDepot,一个开源可扩展架构,用于实现传感器分布式系统的应用程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuvraj Agarwal其他文献
Beyond a House of Sticks: Formalizing Metadata Tags with Brick
超越木屋:用 Brick 形式化元数据标签
- DOI:
10.1145/3360322.3360862 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Gabe Fierro;Jason Koh;Yuvraj Agarwal;Rajesh K. Gupta;D. Culler - 通讯作者:
D. Culler
Dynamic data center load response to variability in private and public electricity costs
数据中心负载对私人和公共电力成本变化的动态响应
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Nathaniel Horner;I. Azevedo;D. Sicker;Yuvraj Agarwal - 通讯作者:
Yuvraj Agarwal
Genie: a longitudinal study comparing physical and software thermostats in office buildings
Genie:比较办公楼物理恒温器和软件恒温器的纵向研究
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bharathan Balaji;Jason Koh;Nadir Weibel;Yuvraj Agarwal - 通讯作者:
Yuvraj Agarwal
Who can Access What, and When?: Understanding Minimal Access Requirements of Building Applications
谁可以访问什么以及何时?:了解构建应用程序的最低访问要求
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jason Koh;Dezhi Hong;Shreyas Nagare;Sudershan Boovaraghavan;Yuvraj Agarwal;Rajesh K. Gupta - 通讯作者:
Rajesh K. Gupta
Verifying GPU kernels by test amplification
通过测试放大验证 GPU 内核
- DOI:
10.1145/2254064.2254110 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Alan Leung;Manish Gupta;Yuvraj Agarwal;Rajesh K. Gupta;Ranjit Jhala;Sorin Lerner - 通讯作者:
Sorin Lerner
Yuvraj Agarwal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuvraj Agarwal', 18)}}的其他基金
SaTC: CORE: Medium: End-to-End Support for Privacy in the Internet -of-things
SaTC:核心:中:物联网隐私的端到端支持
- 批准号:
1801472 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: CSR: Small: Expediting Continual Online Learning on Edge Platforms through Software-Hardware Co-designs
协作研究:企业社会责任:小型:通过软硬件协同设计加快边缘平台上的持续在线学习
- 批准号:
2312157 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
- 批准号:
2314681 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321224 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
- 批准号:
2314680 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321225 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Expediting Continual Online Learning on Edge Platforms through Software-Hardware Co-designs
协作研究:企业社会责任:小型:通过软硬件协同设计加快边缘平台上的持续在线学习
- 批准号:
2312158 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Decentralized Real-Time Machine Learning Systems on Near-User Edge Devices
CSR:小型:协作研究:近用户边缘设备上的分散式实时机器学习系统
- 批准号:
2104416 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research:Heterogeneous Ultra Low Power Accelerator for Wearable Biomedical Computing
CSR:小型:协作研究:用于可穿戴生物医学计算的异构超低功耗加速器
- 批准号:
2006274 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Overheard at Home - Mitigating Overhearing of Continuous Listening Devices
CSR:小:协作研究:在家无意中听到的声音 - 减轻连续监听设备的无意中听到的情况
- 批准号:
1815274 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Overheard at Home - Mitigating Overhearing of Continuous Listening Devices
CSR:小:协作研究:在家无意中听到的声音 - 减轻连续监听设备的无意中听到的情况
- 批准号:
1816213 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant