Long and Medium-Term Research: Investigation of Quasicon- formal Equivalence Classes of Spherical CR Manifolds
中长期研究:球形CR流形拟共形等价类的研究
基本信息
- 批准号:9102437
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-09-01 至 1991-12-01
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Long & Medium-Term Research: Investigation of Quasicon- formal Equivalence Classes of Spherical CR Manifolds This award is made under the Program for Long- & Medium- Term Research at Foreign Centers of Excellence, which enables U.S. postdoctoral researchers to conduct 3 to 12 months' joint research abroad at centers of proven excellence, allowing them access to unique or complementary facilities, expertise and experimental conditions in other countries. This award will support a 12-month visit by Dr. Robert Miner of the University of Maryland, College Park, with Professor H.M. Reimann, Universit>t Bern, Switzerland. Dr. Miner will investigate quasiconformal equivalence classes of spherical CR manifolds based on his earlier classification of CR manifolds with amenable holonomy. Up to finite cover, such a manifold is either S.n-1, a nilmanifold, or the Heisenberg analog of a Hopf manifold, a manifold homeomorphic to S1 X S.n. There is a natural notion of a quasiconformal homeomorphism between manifolds with CR structures, which he hopes to refine up to quasiconformal equivalence. In his dissertation, Dr. Miner showed homeomorphic nilmanifolds arising as covers of spherical CR manifolds with amenable holonomy are actually quasiconformal. In dimension three, the mappings can be explicitly described. With Heisenberg Hopf manifolds, the question is more difficult. Dr. Miner will explore techniques for analyzing this case, and for investigating related questions about quasiconformal equivalence of domains of the Heisenberg group. Eliashberg has described invariants of the symplectic manifold canonically associated to a CR manifold and has shown that certain tori are not quasiconformally equivalent, and these invariants may be more widely applicable. Given a pair of domains, one can define an associated pseudoconformal capacity, which transforms nicely under quasiconformal mappings. From this, Reimann, Pansu, and others have been able to deduce global distortion properties which may be useful in analyzing quasiconformal equivalence. Kor>nyi and Reimann have developed a theory of deformations of quasiconformal mappings on the Heisenberg group. In some cases Goldman and Miner have produced quasiconformal mappings by applying this theory, and there is hope it can be extended to a wider class of examples. The award provides funds for international travel and a flat administrative allowance of $250 for his home institution.
长期中期研究:准晶体的研究 球面CR流形的形式等价类 该奖项是根据长期-中等- 在国外卓越中心的长期研究, 使美国博士后研究人员能够进行3至12 几个月的联合研究在国外的中心, 卓越,使他们能够获得独特的或互补的 设施、专门知识和实验条件 其他国家 该奖项将支持罗伯特博士为期12个月的访问 马里兰州大学帕克分校的迈纳, H.M.教授Reimann,Universit>t伯尔尼,瑞士. Miner博士将研究拟共形等价 类的球面CR流形的基础上,他的早期 具有顺从完整性的CR流形的分类。 直到有限覆盖,这样的流形或者是S.n-1, nilmanifold,或Heisenberg类似的Hopf流形, 同胚于S1 X S.n.的流形 有一种自然 流形间拟共形同胚的概念 与CR结构,他希望完善, 拟共形等价 在他的论文中,博士。 Miner证明了同胚的nilmanifold作为覆盖而产生 的球面CR流形与顺从holonomy是 实际上是拟共形的 在三维空间中, 可以显式描述映射。 和海森伯 Hopf流形,这个问题比较难。 迈纳博士 将探索分析这种情况的技术, 拟共形的相关问题研究 海森堡群的域的等价性 Eliashberg 描述了辛流形的不变量 正则地关联到CR流形,并且已经表明, 某些环面不是拟共形等价的,这些环面 不变量可以更广泛地应用。 给定一对 域,可以定义相关的伪共形 容量,在拟共形下很好地转换 映射。 从这一点上,雷曼,潘苏,和其他人已经被 能够推断出全局失真特性, 在分析拟共形等价时很有用。 Kor>nyi 和Reimann发展了一种变形理论, Heisenberg群上的拟共形映射 在一些 高盛和迈纳提出的拟共形问题 映射通过应用这个理论,有希望, 可以扩展到更广泛的例子。 该奖项为国际旅行提供资金, 250美元的家庭行政津贴 机构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Miner其他文献
Robert Miner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Miner', 18)}}的其他基金
Mathematical Sceinces Computing Research Environments: Computing Equipment for Research on Graphics Visualization
数学科学计算研究环境:图形可视化研究的计算设备
- 批准号:
9405158 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Long and Medium-Term Research: Investigation of Quasicon- formal Equivalence Classes of Spherical CR Manifolds
中长期研究:球形CR流形拟共形等价类的研究
- 批准号:
9296088 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Empirical Study on the Influence of the Development of Health and Medical Tourism on Medium- and Long-term Regional Structural Transformation
健康医疗旅游发展对区域中长期结构转型影响的实证研究
- 批准号:
23K00983 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Proposal to address the medium- to long-term EBOLA associated psychological Distress and psychosocial problems in Mubende District in central Uganda (Ebola+D Project)
解决乌干达中部穆本德地区中长期埃博拉相关心理困扰和心理社会问题的提案(埃博拉D项目)
- 批准号:
MC_PC_22014 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Intramural
Medium- to long-term economic impact assessment method for natural disasters and the benefits of disaster mitigation measures
自然灾害中长期经济影响评估方法及减灾措施效益
- 批准号:
23H01533 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Medium- and long-term verification of developing competencies on lesson design and learning assessment through lesson study based on learning science
通过基于学习科学的课程研究,对课程设计和学习评估能力的发展进行中长期验证
- 批准号:
23K02727 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: HCC: Medium: Designing Social Companion Robots for Long-term Interaction
合作研究:HCC:媒介:设计用于长期交互的社交伴侣机器人
- 批准号:
2312354 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: HCC: Medium: Designing Social Companion Robots for Long-term Interaction
合作研究:HCC:媒介:设计用于长期交互的社交伴侣机器人
- 批准号:
2312353 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312866 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: HCC: Medium: Designing Social Companion Robots for Long-term Interaction
合作研究:HCC:媒介:设计用于长期交互的社交伴侣机器人
- 批准号:
2312352 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Innovative dynamic short-term, medium-term and long-term mine planning strategies incorporating new automation and data analytics technologies
结合新自动化和数据分析技术的创新动态短期、中期和长期矿山规划战略
- 批准号:
RGPIN-2020-05449 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual