Large Deviation Theory Applications to Importance Sampling Monte Carlo Techniques
大偏差理论在重要采样蒙特卡罗技术中的应用
基本信息
- 批准号:9104823
- 负责人:
- 金额:$ 11.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-07-15 至 1995-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is an investigation of a new importance sampling technique called twisted simulation. In the i.i.d. case it corresponds to simulating the events of interest via an exponentially shifted version of the direct simulation probability measures. In the finite dimensional Markov chains of i.i.d. random variables the method is optimal over a large class of importance sampling distributions in the sense of minimizing the asymptotic variance of the estimates. The work may be extended to more useful probability models, in particular Markov additive processes and multidimensional event sets. The theoretical extensions require different analysis techniques than have been used previously. The techniques and tools involved will be sophisticated and involved, bust due to the conjectured optimality of the method, the effort expended on these theoretical investigations should have substantial payoff in applications. The methods promise to provide a rigorous structure for the pursuit of the study of simulation of systems with memory.
本文研究了一种新的重要采样技术——扭曲模拟。在i.i.d情况下,它对应于通过直接模拟概率度量的指数移位版本来模拟感兴趣的事件。在i.i.d随机变量的有限维马尔可夫链中,从最小化估计的渐近方差的意义上说,该方法在一大类重要抽样分布上是最优的。这项工作可以扩展到更有用的概率模型,特别是马尔可夫加性过程和多维事件集。理论扩展需要不同于以前使用的分析技术。所涉及的技术和工具将是复杂和复杂的,但由于该方法的推测最优性,在这些理论研究上所付出的努力应该在应用中有实质性的回报。这些方法有望为具有内存的系统的仿真研究提供一个严格的结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Bucklew其他文献
James Bucklew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Bucklew', 18)}}的其他基金
Blind Simulation and Regenerative Processes
盲模拟和再生过程
- 批准号:
9505443 - 财政年份:1995
- 资助金额:
$ 11.47万 - 项目类别:
Standard Grant
Presidential Young Investigator Award: Image Restoration Algorithms of the Gerchberg-Papoulis (GP) Type
总统青年研究员奖:Gerchberg-Papoulis (GP) 型图像恢复算法
- 批准号:
8351260 - 财政年份:1984
- 资助金额:
$ 11.47万 - 项目类别:
Continuing Grant
相似海外基金
Non-equilibrium Fluctuations and Cooperativity in Single-Molecule Dynamics: Going Beyond FluctuationTheorems and Large Deviation Theory: Thermodynamically consistent renewal networks for driven single-molecule dynamics with memory
单分子动力学中的非平衡涨落和协同性:超越涨落定理和大偏差理论:具有记忆驱动的单分子动力学的热力学一致更新网络
- 批准号:
316896626 - 财政年份:2017
- 资助金额:
$ 11.47万 - 项目类别:
Independent Junior Research Groups
Deviation from Truth-telling and Stability in School Choice Problems: Theory and Experiment
择校问题中的说实话偏差与稳定性:理论与实验
- 批准号:
15K03357 - 财政年份:2015
- 资助金额:
$ 11.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NeTS: Small: Collaborative Research: Research into Worst-Case Large Deviation Theory for Network Algorithmics
NeTS:小型:协作研究:网络算法最坏情况大偏差理论的研究
- 批准号:
1422286 - 财政年份:2014
- 资助金额:
$ 11.47万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Research into Worst-Case Large Deviation Theory for Network Algorithmics
NeTS:小型:协作研究:网络算法最坏情况大偏差理论的研究
- 批准号:
1423182 - 财政年份:2014
- 资助金额:
$ 11.47万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - "Small Deviation Probabilities: Theory and Applications"
CBMS 数学科学区域会议 - “小偏差概率:理论与应用”
- 批准号:
1137804 - 财政年份:2011
- 资助金额:
$ 11.47万 - 项目类别:
Standard Grant
Internationally diversified Investment using Mean-Absolute Deviation Model : Theory and Empirical Study
使用均值-绝对偏差模型进行国际多元化投资:理论与实证研究
- 批准号:
15310122 - 财政年份:2003
- 资助金额:
$ 11.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New Development of Applied Statistical Decision Theory -Application of Multidimentional Large Deviation Theory
应用统计决策理论的新进展——多维大偏差理论的应用
- 批准号:
14380125 - 财政年份:2002
- 资助金额:
$ 11.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Symmetric Markov processes and large deviation theory
对称马尔可夫过程和大偏差理论
- 批准号:
12640099 - 财政年份:2000
- 资助金额:
$ 11.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental homotopy theory I:localization deviation
基本同伦理论一:定位偏差
- 批准号:
46255-1996 - 财政年份:1999
- 资助金额:
$ 11.47万 - 项目类别:
Discovery Grants Program - Individual
Fundamental homotopy theory I:localization deviation
基本同伦理论一:定位偏差
- 批准号:
46255-1996 - 财政年份:1998
- 资助金额:
$ 11.47万 - 项目类别:
Discovery Grants Program - Individual