RIA: Efficient ALgorithms for the Design of Systems with non-Gaussian Inputs
RIA:用于设计非高斯输入系统的高效算法
基本信息
- 批准号:9109858
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-09-01 至 1994-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objectives of this project are to develop highly efficient iterative algorithms for use in system design (especially communication systems) in the presence of non-Gaussian disturbances, and to extend these algorithms to the design of systems which efficiently adapt to nonstationary environments. Analytic solutions to the design of systems with non-Gaussian inputs are typically intractable, therefore numerical methods are frequently required. Stochastic approximation algorithms are effective design alternatives which require only estimates of the system error at an iterated set of system parameters. This project merges concepts from Importance Sampling with existing stochastic approximation algorithms to dramatically reduce the total required computations in the design of parameterized systems and inputs. In the situation where the inputs are non-stationary, a selfmodifying Importance Sampling strategy is developed for use with adaptive implementations of these algorithms. This requires the coupling of techniques in estimation theory with Importance Sampling strategies derived from static systems. Example of particular interest are communication systems operating in the presence of stationary and nonstationary non-Gaussian background noise. Preliminary results demonstrate that for the scalar design case, the computational savings are unbounded when designing detection systems whose error rates diminish.
该项目的目标是开发用于系统设计(特别是通信系统)的高效迭代算法,并将这些算法扩展到有效地适应非平稳环境的系统设计。具有非高斯输入的系统设计的解析解通常是难以处理的,因此经常需要数值方法。随机逼近算法是一种有效的设计方案,它只需要在迭代的系统参数集上估计系统误差。这个项目将重要性抽样的概念与现有的随机近似算法相结合,大大减少了设计参数化系统和输入时所需的总计算量。在输入是非平稳的情况下,开发了一种用于这些算法的自适应实现的自修正重要性采样策略。这需要将估计理论中的技术与源自静态系统的重要抽样策略相结合。特别感兴趣的例子是在存在平稳和非平稳非高斯背景噪声的情况下操作的通信系统。初步结果表明,对于标量设计情况,当设计误码率较低的检测系统时,计算量的节省是无限的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey Orsak其他文献
Geoffrey Orsak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey Orsak', 18)}}的其他基金
Adaptive Receivers for Uncertain, Time-Varying Channels
适用于不确定、时变信道的自适应接收器
- 批准号:
9896209 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Adaptive Receivers for Uncertain, Time-Varying Channels
适用于不确定、时变信道的自适应接收器
- 批准号:
9628294 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Signal Processing Education on the Internet
互联网上的协作信号处理教育
- 批准号:
9551616 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Proposal to Fund 1994 IEEE Information Theory Workshop on Information Theory and Statistics
资助 1994 年 IEEE 信息论与统计信息论研讨会的提案
- 批准号:
9414193 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
- 批准号:
2425308 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: A Theoretical Exploration of Efficient and Accurate Clustering Algorithms
职业生涯:高效准确聚类算法的理论探索
- 批准号:
2337832 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
ATD: Efficient and Effective Algorithms for Detection of Anomalies in High-dimensional Spatiotemporal Data with Large Amounts of Missing Data
ATD:高效且有效的高维时空数据异常检测算法
- 批准号:
2318925 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration Analysis
职业:用于电网规模储能控制、竞价和集成分析的计算高效算法
- 批准号:
2239046 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: CIF: Sequential Decision-Making Algorithms for Efficient Subset Selection in Multi-Armed Bandits and Optimization of Black-Box Functions
CRII:CIF:多臂老虎机中高效子集选择和黑盒函数优化的顺序决策算法
- 批准号:
2246187 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317192 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317194 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant