Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits

协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制

基本信息

  • 批准号:
    2317194
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Data privacy is a fundamental challenge across numerous applications that rely on graphs and network data, including healthcare, social networks, finance, and computational epidemiology. Adopting privacy-preserving solutions to practice in such applications is often hindered by the loss in utility and lack of scalability to large-scale problems with billions of nodes/edges. This project aims to develop private algorithms for several fundamental problems in graph mining and network science, that can scale to networks of the size that arise in real-world applications and provide good accuracy bounds. The project’s broader significance and importance are that private algorithms will become available to a new community of researchers from public-health policy planning, cybersecurity and social network analysis. Adopting graph differential privacy (DP) as the notion of privacy, this project achieves the above goals through fundamental contributions in privacy-preserving algorithm design for various fundamental problems in graph mining and network science, such as subgraph detection, node ranking, community detection, and studying properties of graph dynamical systems such as epidemic spread on networks. The project leverages tools from distributed computation, such as sampling and sketching, and develops innovative tools for graph DP to yield highly-scalable private graph algorithms with rigorous accuracy bounds (both in theory and practice). Finally, the project will lead to the development of a private graph processing system, which will be incorporated into a network science cyber-infrastructure. Accordingly, the tools of graph DP will be made available to the broader community of network science and computational epidemiology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据隐私是许多依赖图表和网络数据的应用程序的根本挑战,包括医疗保健、社交网络、金融和计算流行病学。在这样的应用中采用隐私保护解决方案通常会受到实用性的损失和对具有数十亿个节点/边的大规模问题缺乏可扩展性的阻碍。该项目旨在为图挖掘和网络科学中的几个基本问题开发专用算法,这些算法可以扩展到现实世界应用程序中出现的网络规模,并提供良好的精度界限。该项目更广泛的意义和重要性在于,私人算法将提供给公共卫生政策规划、网络安全和社交网络分析等领域的新研究人员。本课题采用图差分隐私(DP)作为隐私的概念,通过对图挖掘和网络科学中的各种基本问题,如子图检测、节点排序、社区检测,以及研究网络上流行病传播等图动态系统的性质,在隐私保护算法设计方面做出了基本贡献,从而实现了上述目标。该项目利用分布式计算的工具,如采样和草图绘制,并为图DP开发创新工具,以产生具有严格精度界限的高度可扩展的私有图算法(无论是在理论上还是在实践中)。最后,该项目将导致开发一个私人图形处理系统,该系统将被纳入网络科学网络基础设施。因此,GRAPE DP的工具将提供给更广泛的网络科学和计算流行病学社区。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aravind Srinivasan其他文献

Scheduling on Unrelated Machines under Tree-Like Precedence Constraints
  • DOI:
    10.1007/s00453-007-9004-y
  • 发表时间:
    2007-09-15
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    V. S. Anil Kumar;Madhav V. Marathe;Srinivasan Parthasarathy;Aravind Srinivasan
  • 通讯作者:
    Aravind Srinivasan
Concentration of Submodular Functions Under Negative Dependence
负依赖下子模函数的集中
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sharmila Duppala;George Z. Li;Juan Luque;Aravind Srinivasan;Renata Valieva
  • 通讯作者:
    Renata Valieva
Approximating weighted completion time via stronger negative correlation
  • DOI:
    10.1007/s10951-023-00780-y
  • 发表时间:
    2023-03-30
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Alok Baveja;Xiaoran Qu;Aravind Srinivasan
  • 通讯作者:
    Aravind Srinivasan
A constructive algorithm for the LLL on permutations
排列上 LLL 的构造性算法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David G. Harris;Aravind Srinivasan
  • 通讯作者:
    Aravind Srinivasan
The local nature of Δ-coloring and its algorithmic applications
  • DOI:
    10.1007/bf01200759
  • 发表时间:
    1995-06-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Alessandro Panconesi;Aravind Srinivasan
  • 通讯作者:
    Aravind Srinivasan

Aravind Srinivasan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aravind Srinivasan', 18)}}的其他基金

Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
  • 批准号:
    1918749
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
FOCS Conference Student and Postdoc Travel Support
FOCS 会议学生和博士后旅行支持
  • 批准号:
    1746451
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Probabilistic Models and Algorithms
EAGER:概率模型和算法
  • 批准号:
    1749864
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
FOCS Conference Student Travel Support
FOCS 会议学生旅行支持
  • 批准号:
    1647461
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AF: Small: Randomized Algorithms and Stochastic Models
AF:小:随机算法和随机模型
  • 批准号:
    1422569
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NetSE: Large: Collaborative Research: Contagion in Large Socio-Communication Networks
NetSE:大型:协作研究:大型社会通信网络中的传染
  • 批准号:
    1010789
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS-NBD: An Integrated Approach to Computing Capacity and Developing Efficient Cross-Layer Protocols for Wireless Networks
合作研究:NeTS-NBD:计算能力和开发高效无线网络跨层协议的综合方法
  • 批准号:
    0626636
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Probabilistic Approaches in Combinatorial Optimization
组合优化中的概率方法
  • 批准号:
    0208005
  • 财政年份:
    2002
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了