Quantum Critical Phenomena in Disordered Interacting Bose Systems

无序相互作用玻色系统中的量子临界现象

基本信息

  • 批准号:
    9206023
  • 负责人:
  • 金额:
    $ 23.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1992
  • 资助国家:
    美国
  • 起止时间:
    1992-09-01 至 1995-12-31
  • 项目状态:
    已结题

项目摘要

The physics of disordered, correlated Bose sytems constitutes a major challenge. Recently a density controlled superfluid transition was observed in helium-four absorbed in porous materials with a superfluid density exponent contrdicting earlier theories; new types of scaling behavior of the resistivity have been seen in disordered superconducting films and wires; and the observation of a possible universal conductance in granular superconducting films has attracted considerable excitement. A related problem of primary importance is the vortex state of the high temperature superconductors, where an unconventional, vortex-glass phase has been observed in some materials. At the same time, the discovery of heavy fermion and oxide superconductors has driven a substantial improvement in numerical techniques and also led to genuinely new analytical approaches to strongly correlated fermions. These advanceshave yet to be applied to the interacting boson problem. The research will apply Quantum Monte Carlo, the Schwinger boson approach and the perturbative scaling methids of localization theory to explore the quantum phase transitions taking place in helium-four absorbed in porous media and granular superconductors, as modeled by a disordered, interacting boson Hamiltonian. The disorder will be handled by methods which were successful in the spin-glass problem, among others finite size scaling of appropriately chosen dimensionless quantities, and a suitable version of the maximum entropy method. %%% Theoretical research will be conducted using numerical and analytical techniques to study the behavior of disordered, interacting many particle systems which obey Bose statistics. New methods will be applied to describe such diverse physical systems as properties of helium absorbed in porous materials and the behavior of high temperature superconductors.
无序、相关的 Bose 系统的物理学构成了一项重大挑战。 最近,在吸附在多孔材料中的氦四中观察到密度控制的超流体转变,其超流体密度指数与早期理论相矛盾; 在无序超导薄膜和导线中发现了新型电阻率缩放行为;在粒状超导薄膜中观察到可能存在的普遍电导引起了相当大的兴奋。 一个最重要的相关问题是高温超导体的涡旋态,在一些材料中观察到非常规的涡旋玻璃相。 与此同时,重费米子和氧化物超导体的发现推动了数值技术的实质性改进,也带来了强相关费米子的真正新的分析方法。 这些进展尚未应用于相互作用的玻色子问题。 该研究将应用量子蒙特卡罗、施温格玻色子方法和局域化理论的微扰标度方法来探索吸收在多孔介质和粒状超导体中的氦四中发生的量子相变,如无序相互作用的玻色子哈密顿量所建模的。 这种无序将通过在自旋玻璃问题中成功的方法来处理,其中包括适当选择的无量纲量的有限尺寸缩放,以及最大熵方法的合适版本。 %%% 理论研究将使用数值和分析技术来研究服从玻色统计的无序、相互作用的许多粒子系统的行为。 新方法将用于描述多孔材料中吸收的氦的特性和高温超导体的行为等不同的物理系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Scalettar其他文献

A hybrid Monte Carlo study of bond-stretching electron–phonon interactions and charge order in BaBiO3
对 BaBiO3 中键拉伸电子-声子相互作用和电荷有序的混合蒙特卡罗研究
  • DOI:
    10.1038/s41524-023-00998-6
  • 发表时间:
    2023-03-24
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Benjamin Cohen-Stead;Kipton Barros;Richard Scalettar;Steven Johnston
  • 通讯作者:
    Steven Johnston
Magnetoresistance effects in a spin-fermion model for multilayers
多层自旋费米子模型中的磁阻效应
π phase shift across stripes in a charge density wave system
  • DOI:
    https://doi.org/10.1103/PhysRevB.105.115116
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Tao Ying;Richard Scalettar;Rubem Mondaini
  • 通讯作者:
    Rubem Mondaini

Richard Scalettar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Scalettar', 18)}}的其他基金

Quantum Monte Carlo Using Multicore Processors: Enabling Simulations in Inhomogeneous Environments
使用多核处理器的量子蒙特卡罗:在非均匀环境中实现模拟
  • 批准号:
    1005503
  • 财政年份:
    2010
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Continuing Grant
U.S.-Brazil Dissertation Enhancement: Magnetism and Transport in the Inhomogeneous Hubbard Model
美国-巴西论文强化:非齐次哈伯德模型中的磁性和输运
  • 批准号:
    0803230
  • 财政年份:
    2008
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Standard Grant
Metal-Insulator Transitions in Correlated Quantum Systems
相关量子系统中的金属-绝缘体跃迁
  • 批准号:
    0312261
  • 财政年份:
    2003
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Standard Grant
ITR: Advances of Core Numerical Linear Algebra Techniques for Quantum Simulations in Solid State Physics
ITR:固体物理量子模拟核心数值线性代数技术的进展
  • 批准号:
    0313390
  • 财政年份:
    2003
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Standard Grant
U.S.-France Cooperative Research: Disorder-Driven Quantum Phase Transitions
美法合作研究:无序驱动的量子相变
  • 批准号:
    0124863
  • 财政年份:
    2002
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Standard Grant
Superconductivity in The Disordered, Attractive Hubbard Model
无序、有吸引力的哈伯德模型中的超导性
  • 批准号:
    0203837
  • 财政年份:
    2002
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Continuing Grant
Quantum Phase Transitions and Vortex Dynamics
量子相变和涡动力学
  • 批准号:
    9528535
  • 财政年份:
    1996
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Continuing Grant
CS&E Postdoctoral Associate for Parallel Computing and Quantum Simulations
CS
  • 批准号:
    9405041
  • 财政年份:
    1994
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Standard Grant

相似海外基金

Investigation of quantum dynamics of vortices and quantum critical phenomena in highly crystalline 2D superconductors
高结晶二维超导体中涡旋量子动力学和量子临界现象的研究
  • 批准号:
    21H01792
  • 财政年份:
    2021
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Magnetic properties of alpha-Mn under high pressure, Anomalous Hall effect and quantum critical phenomena
高压下α-Mn的磁性能、反常霍尔效应和量子临界现象
  • 批准号:
    21H01042
  • 财政年份:
    2021
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of quantum critical phenomena in two-dimensional superconductors by thermoelectric response
通过热电响应研究二维超导体中的量子临界现象
  • 批准号:
    20K14413
  • 财政年份:
    2020
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Surface and bulk critical phenomena in generalized quantum antiferromagnets
广义量子反铁磁体中的表面和体积临界现象
  • 批准号:
    414456783
  • 财政年份:
    2019
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Research Grants
Numerical study of critical phenomena in disordered topological quantum systems
无序拓扑量子系统中临界现象的数值研究
  • 批准号:
    19K14607
  • 财政年份:
    2019
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of quantum critical phenomena in a statistical system with quantum gravitational effects
阐明具有量子引力效应的统计系统中的量子临界现象
  • 批准号:
    19K14705
  • 财政年份:
    2019
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Non-equilibrium Critical Phenomena in Many-Body Quantum Systems
多体量子系统中的非平衡临界现象
  • 批准号:
    1912799
  • 财政年份:
    2019
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Continuing Grant
Critical phenomena of superfluid quantum transition in a one-dimensional Helium system
一维氦系统中超流量子跃迁的临界现象
  • 批准号:
    18K03535
  • 财政年份:
    2018
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multipolar quantum critical phenomena in Pr and Nd compounds under high pressures up to 20 GPa
Pr 和 Nd 化合物在高达 20 GPa 的高压下的多极量子临界现象
  • 批准号:
    18K03518
  • 财政年份:
    2018
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probing orbital symmetry in the quantum critical phenomena for the strongly correlated systems using the polarized core-level spectroscopy
使用偏振核心能级光谱探测强相关系统量子临界现象中的轨道对称性
  • 批准号:
    18K03512
  • 财政年份:
    2018
  • 资助金额:
    $ 23.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了