Soft Decision Decoding For Block Codes Using Artificial Neural Networks

使用人工神经网络对块码进行软决策解码

基本信息

  • 批准号:
    9216686
  • 负责人:
  • 金额:
    $ 12.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1993
  • 资助国家:
    美国
  • 起止时间:
    1993-08-01 至 1996-01-31
  • 项目状态:
    已结题

项目摘要

9216686 Wicker The revival of interest in artificial neural networks (ANN's) in the early 1980's has spurred research into their application in many engineering fields, including digital signal processing and communications. The pattern recognition capabilities of ANN's allows them to emulate a variety of functions. This emulation is enhanced through the use of training algorithms, such as back-propagation, that allow some types of ANN's to "learn" desired functions. This research is an investigation into the application of ANN's to the soft decision decoding of block error control codes. In the past two years, experimental studies have demonstrated that certain ANN's can perform error control decoding for some block codes. The experimental results have so far shown that ANN's can perform hard decision decoding, but soft decision decoding results have been extremely limited. In this investigation, the error control problem is first translated into the terms of functional analysis. Decoding is viewed as a mapping from a continuous received signal space onto a discrete information word space. Decoder design is thus translated into a problem of functional approximation. The next step is to use a highly promising class of ANN's, feedforward neural networks (FFNN's), to implement the decoding function in an efficient manner. The operation of FFNN's can be viewed geometrically, with each layer in the network carving up the received signal space into increasingly lower dimensional subspaces, culminating in an output decision layer that provides estimates of the transmitted information bits. The functional approximation approach thus allows for ideal soft decision decoding, while the FFNN design uses the algebro-geometric redundancy within the block code to reduce the decoder complexity. The performance of these decoders will be further enhanced through the use of ANN training techniques that will match input layer decision metrics to channel conditions w hile the decoder is operating. The result will be a series of efficient soft decision decoders for a variety of block codes in a variety of applications. ***
9216686威克上世纪80年代初,人们对人工神经网络(ANN)重新产生兴趣,S推动了人们对其在许多工程领域的应用的研究,包括数字信号处理和通信。人工神经网络的模式识别能力使其能够模拟各种功能。通过使用诸如反向传播之类的训练算法来增强这种仿真,该训练算法允许某些类型的人工神经网络“学习”期望的功能。研究了人工神经网络在分组差错控制码软判决译码中的应用。在过去的两年里,实验研究表明,某些人工神经网络可以对某些分组码进行差错控制译码。到目前为止的实验结果表明,ANN可以进行硬判决译码,但软判决译码的结果非常有限。在本研究中,首先将差错控制问题转化为泛函分析。译码被视为从连续接收信号空间到离散信息字空间的映射。从而将译码设计转化为函数逼近问题。下一步是使用一类非常有前途的人工神经网络--前馈神经网络(FFNN),以高效地实现解码功能。可以从几何上观察FFNN的操作,其中网络中的每一层将接收的信号空间分割成越来越低的维子空间,最终在提供对传输的信息比特的估计的输出决策层中。因此,函数逼近方法允许理想的软判决译码,而FFNN设计使用分组码中的代数几何冗余来降低译码复杂度。这些解码器的性能将通过使用ANN训练技术来进一步提高,所述ANN训练技术将在解码器运行时将输入层判决度量与信道条件匹配。其结果将是一系列高效的软判决解码器,适用于各种应用中的各种分组码。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Wicker其他文献

Stephen Wicker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Wicker', 18)}}的其他基金

TC: Small : Privacy-Aware Design Strategies for Mobile Communications and Computing
TC:小型:移动通信和计算的隐私意识设计策略
  • 批准号:
    1016203
  • 财政年份:
    2010
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Standard Grant
NETS-NOSS: Ultra Low-Power Self-Configuring Wireless
NETS-NOSS:超低功耗自配置无线
  • 批准号:
    0435190
  • 财政年份:
    2004
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Continuing Grant
ITR: Self-Configuring Sensor Networks for Disaster Prevention, Mitigation and Relief
ITR:用于防灾、减灾和救灾的自配置传感器网络
  • 批准号:
    0325556
  • 财政年份:
    2003
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Continuing grant
Predictive, Sensor-Assisted Wireless Multimedia Systems
预测性传感器辅助无线多媒体系统
  • 批准号:
    9725251
  • 财政年份:
    1997
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Standard Grant
Adaptive Code Division Multiple Access Systems
自适应码分多址系统
  • 批准号:
    9696201
  • 财政年份:
    1996
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Standard Grant
Adaptive Code Division Multiple Access Systems
自适应码分多址系统
  • 批准号:
    9505887
  • 财政年份:
    1995
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Standard Grant
Adaptive Bandwidth-Efficient Coding for Nonstationary Channels
非平稳信道的自适应带宽高效编码
  • 批准号:
    9016276
  • 财政年份:
    1991
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Continuing Grant
Research Initiation: Adaptive Coding on Nonstationary Channels with Feedback
研究启动:带反馈的非平稳信道自适应编码
  • 批准号:
    9009877
  • 财政年份:
    1990
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

A study on soft-decision decoding of fuzzy extractors for physically unclonable functions
物理不可克隆函数模糊提取器软判决译码研究
  • 批准号:
    23K11113
  • 财政年份:
    2023
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on digital watermark without detection error using soft-decision decoding for linear codes
线性码软判决解码无误码数字水印研究
  • 批准号:
    26330157
  • 财政年份:
    2014
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Near-Optimum Soft Decision Decoding of Non-Binary Linear Codes
非二进制线性码的近最优软判决译码
  • 批准号:
    0515154
  • 财政年份:
    2005
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Standard Grant
An improvement to soft-decision iterative decoding algorithms for linear block codes
线性分组码软判决迭代译码算法的改进
  • 批准号:
    12650391
  • 财政年份:
    2000
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Soft-Decision Decoding of Codes
代码的软判决解码
  • 批准号:
    0096191
  • 财政年份:
    2000
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Continuing Grant
Soft-Decision Decoding of Codes
代码的软判决解码
  • 批准号:
    9814054
  • 财政年份:
    1999
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Continuing Grant
CAREER: Near-Optimum Low-Complexity Soft Decision Decoding of Linear Codes
职业:线性码的近最优低复杂度软判决解码
  • 批准号:
    9732959
  • 财政年份:
    1998
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Standard Grant
Coding and fast decoding for linear codes with soft and bit-level decision
具有软和位级判决的线性码的编码和快速解码
  • 批准号:
    08650432
  • 财政年份:
    1996
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Soft-decision Multi-stage Decoding for Linear Block Codes
线性分组码的软判决多级译码
  • 批准号:
    08650429
  • 财政年份:
    1996
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Soft-Decision Decoding, Trellis Structure and Coded Modulation
软判决解码、网格结构和编码调制
  • 批准号:
    9415374
  • 财政年份:
    1995
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了