Predictive, Sensor-Assisted Wireless Multimedia Systems

预测性传感器辅助无线多媒体系统

基本信息

  • 批准号:
    9725251
  • 负责人:
  • 金额:
    $ 89.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-09-15 至 2001-08-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT NCR-9725251 Stephen Wicker, Terrence Fine, and Joseph Halpern Cornell University Predictive, Sensor-Assisted Wireless Multimedia Systems The PCS systems of the future will provide a variety of services to mobile users, including voice, high speed data, video, e-mail, teleconferencing, and the transfer of medical Images. The intelligent PCS network will be required to provide channel access with a minimum of call blocking, negotiate quality of service, allocate resources, and track users throughout their sessions. It is proposed to develop a series of expert systems that will optimize random access, resource allocation, and mobility management protocols. These expert systems will use a number of technologies and techniques from the fields of neural networks, artificial intelligence, and knowledge representation. There are three levels of agents in the proposed intelligent PCS network: mobile user, Base Station Controller (BSC), and the Mobile Switching Center (MSC). It is assumed that the PCS system is cellular, with several BSC's interacting with a single MSC. It is proposed to determine a means for representing and exploiting the information available to each type of agent. At the physical layer, in-band transmitted power levels will be tracked by a grid of low-cost sensors (radiometers). The sensors will provide power measurements as a function of time and location. In the proposal it is shown that this information can be used in the development of a BSC-based intelligent ALOHA multiple access scheme. Neural networks are described that can efficiently use the sensor data to estimate the number of users involved in individual collision events. This information is used in turn to estimate the number of backlogged users and to select an optimal backoff algorithm, thus maximizing Aloha channel throughput. The sensor grid can also be used by the BSC and MSC to support resource allocation, handoffs, and the tracking of scheduled user transmissions. In the proposed research program, sensor-based expert systems will be developed for three distinct phases of PCS operation: system planning and layout, multiple access, and adaptive resource allocation. Higher level information can be acquired and used at the BSC's and the MSC. The BSC's will obtain information regarding the local users' bandwidth and quality of service requirements as a function of time. The BSC's will also track local channel conditions, and develop a detailed propagation model for the cell. The model will be used to as an aid to power control within the cell. The BSC is expected to act as an autonomous agent in local resource allocation and power control. The MSC will be responsible for allocating resources between cells. An allocation protocol will be developed to move resources between cells in response to traffic information acquired by the BSC's and passed to the MSC. The BSC's will also pass propagation and user tracking information to the MSC. The MSC will use this information to create a global propagation and user tracking model that will support the handoff decision process. An effort will be made to develop usage tendency profiles for individual users. The collection of user profiles will be used to develop models for global resource allocation.
摘要 NCR-9725251 Stephen Wicker、Terrence Fine和Joseph Halpern康奈尔大学预测、传感器辅助无线多媒体系统 未来的PCS系统将为移动的用户提供各种服务,包括语音、高速数据、视频、电子邮件、电话会议和医学图像传输。 智能PCS网络将需要提供具有最小呼叫阻塞的信道接入,协商服务质量,分配资源,并在用户会话期间跟踪用户。 建议开发一系列的专家系统,将优化随机接入,资源分配和移动性管理协议。 这些专家系统将使用来自神经网络、人工智能和知识表示领域的许多技术和方法。 在所提出的智能PCS网络中有三个层次的代理:移动的用户、基站控制器(BSC)和移动的交换中心(MSC)。假定PCS系统是蜂窝式的,几个BSC与单个MSC相互作用。 建议确定一种方法,用于表示和利用可用于每种类型的代理的信息。 在物理层,带内发射功率水平将由低成本传感器(辐射计)网格跟踪。 传感器将提供作为时间和位置的函数的功率测量。 在该建议中,它表明,这些信息可以用于在一个基于BSC的智能ALOHA多址接入方案的发展。 神经网络的描述,可以有效地使用传感器数据来估计在个别碰撞事件中所涉及的用户的数量。 该信息又被用来估计积压用户的数量,并选择一个最佳的退避算法,从而最大限度地提高Aloha信道吞吐量。 BSC和MSC还可以使用传感器网格来支持资源分配、切换和对预定用户传输的跟踪。 在拟议的研究计划中,基于传感器的专家系统将开发PCS操作的三个不同阶段:系统规划和布局,多路访问和自适应资源分配。 可以在BSC和MSC处获取和使用更高级别的信息。 BSC将获得关于作为时间函数的本地用户的带宽和服务质量要求的信息。BSC还将跟踪本地信道条件,并为小区开发详细的传播模型。 该模型将被用来作为一个援助,在小区内的功率控制。 BSC被期望在本地资源分配和功率控制中充当自治代理。 MSC将负责在小区之间分配资源。 将开发一种分配协议,以响应BSC获取并传递给MSC的业务信息,在小区之间移动资源。 BSC还将传播和用户跟踪信息传递给MSC。 MSC将使用该信息来创建将支持越区切换决策过程的全球传播和用户跟踪模型。 将努力为个人用户编制使用趋势简介。 收集的用户概况将用于制定全球资源分配模式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Wicker其他文献

Stephen Wicker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Wicker', 18)}}的其他基金

TC: Small : Privacy-Aware Design Strategies for Mobile Communications and Computing
TC:小型:移动通信和计算的隐私意识设计策略
  • 批准号:
    1016203
  • 财政年份:
    2010
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Standard Grant
NETS-NOSS: Ultra Low-Power Self-Configuring Wireless
NETS-NOSS:超低功耗自配置无线
  • 批准号:
    0435190
  • 财政年份:
    2004
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Continuing Grant
ITR: Self-Configuring Sensor Networks for Disaster Prevention, Mitigation and Relief
ITR:用于防灾、减灾和救灾的自配置传感器网络
  • 批准号:
    0325556
  • 财政年份:
    2003
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Continuing grant
Adaptive Code Division Multiple Access Systems
自适应码分多址系统
  • 批准号:
    9696201
  • 财政年份:
    1996
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Standard Grant
Adaptive Code Division Multiple Access Systems
自适应码分多址系统
  • 批准号:
    9505887
  • 财政年份:
    1995
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Standard Grant
Soft Decision Decoding For Block Codes Using Artificial Neural Networks
使用人工神经网络对块码进行软决策解码
  • 批准号:
    9216686
  • 财政年份:
    1993
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Continuing Grant
Adaptive Bandwidth-Efficient Coding for Nonstationary Channels
非平稳信道的自适应带宽高效编码
  • 批准号:
    9016276
  • 财政年份:
    1991
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Continuing Grant
Research Initiation: Adaptive Coding on Nonstationary Channels with Feedback
研究启动:带反馈的非平稳信道自适应编码
  • 批准号:
    9009877
  • 财政年份:
    1990
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Continuing Grant

相似国自然基金

人类NADPH sensor蛋白HSCARG调控机制研究
  • 批准号:
    30930020
  • 批准年份:
    2009
  • 资助金额:
    170.0 万元
  • 项目类别:
    重点项目
基于sensor agent的营养液组分动态测量与建模研究
  • 批准号:
    60775014
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

U.S.-RoI-NI R&D Partnership: Ultrasensitive Nitrogen Sensor using Imprinted Polymer Assisted-Bacteria for Real-Time Monitoring of Water Quality
美国-RoI-NI R
  • 批准号:
    2130661
  • 财政年份:
    2021
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Continuing Grant
Sensor Fusion Assisted Autonomous Driving
传感器融合辅助自动驾驶
  • 批准号:
    532529-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
CCSS: Learning-Driven Scheduling and Communications in Edge-Assisted Battery-Free Wireless Sensor Networks
CCSS:边缘辅助无电池无线传感器网络中的学习驱动的调度和通信
  • 批准号:
    2011845
  • 财政年份:
    2020
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Standard Grant
Smart Assisted Living - Applying Machine Learning to Non-Intrusive Sensor Data for Behavioral Trend Recognition
智能辅助生活 - 将机器学习应用于非侵入式传感器数据以进行行为趋势识别
  • 批准号:
    553802-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Sensor Fusion Assisted Autonomous Driving
传感器融合辅助自动驾驶
  • 批准号:
    532529-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Application of tranduducer power device develope by ultrasonic assisted hydrothermal method for Health and environmental monitoring sensor
超声波辅助水热法研制的换能器动力装置在健康与环境监测传感器中的应用
  • 批准号:
    19K04411
  • 财政年份:
    2019
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sensor Fusion Assisted Autonomous Driving
传感器融合辅助自动驾驶
  • 批准号:
    532529-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Achieving Autonomy by Learning from Sensor-Assisted Control in a Wheelchair-Based Human-Robot Collaborative System
通过学习基于轮椅的人机协作系统中的传感器辅助控制来实现自主性
  • 批准号:
    1826258
  • 财政年份:
    2018
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Standard Grant
Ultrasonic-assisted mid-infrared spectroscopic imaging for non-invasive blood glucose sensor
用于无创血糖传感器的超声辅助中红外光谱成像
  • 批准号:
    18H01452
  • 财政年份:
    2018
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Intelligent AUV-Assisted Heterogeneous Underwater Acoustic Sensor Networks
智能 AUV 辅助异构水下声学传感器网络
  • 批准号:
    293264-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 89.25万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了