Replication of the lagging strand by DNA Polymerase III Holoenzyme

DNA 聚合酶 III 全酶复制滞后链

基本信息

项目摘要

9303921 O'Donnell The polymerase that replicates the chromosome of E. coli, DNA polymerase III holoenzyme (polIII), consists of 10 different subunits. As a holoenzyme, polIII hydrolyzes ATP to bind tightly to DNA enabling highly processive DNA synthesis. The holoenzyme can be dissociated into subassemblies: the 3-subunit core polymerase @ subunit (polymerase), @subunit (3'-5' exonuclease) and 0 subunit , the 5-subunit y complex (y@@xy subunits); the B subunit and the t subunit. The function of the y complex is to couple ATP to deliver the B subunit to DNA. The B subunit is a dimer shaped like a ring (X-ray analysis) and completely encircles DNA. The B ring then binds the core polymerase acting to tether it to DNA for highly processive synthesis. The t subunit dimer binds two core polymerases together, presumably for simultaneous synthesis of both leading and lagging strands of the duplex chromosome. Synthesis of the lagging strand is discontinuous, being composed of approximately 300 fragments (Okazaki fragments). Hence, each time polIII on the lagging strand completes an Okazaki fragment it must be capable of rapidly recycling itself from the end of the fragment to initiate synthesis of new fragment. However, the polIII is bound to DNA so tightly by the B subunit ring that it remains tightly bound to a completed product DNA rather than cycling to new primed templates. We have recently discovered a mechanism whereby polIII rapidly cycles to new DNA templates. The mechanism entails a novel disaggregation of the polIII structure followed by reassembly in which the polIII disengages its B ring specifically upon completing the replication of a DNA template and then it reassembles with a B ring on a new DNA molecule. This proposal aims to discover the detailed molecular basis behind this polymerase transfer event. New reagents and technology important to the proposed work include large amounts of pure preparations of each of the 10 subunits of polIII an d the ability to reconstitute the entire holoenzyme from these individual proteins. Hence we propose to perform a series of subunit omission studies to determine which subunits are responsible for disengaging the B ring from polIII and which are needed to transfer the polymerase to the next B ring on another DNA molecule. We will also investigate how the B rings that are left on DNA as the polymerase cycles to multiple templates, are themselves removed from the DNA for eventual reutilization. Then we will develop a replication fork system to investigate which subunits of polIII are needed for efficient interaction with the helicase and primase during ongoing synthesis of both strands of duplex DNA. %%% The genetic material is in the form of two long interwound strands of deoxyribonucleic acid, or DNA. These two DNA strands contain the information needed to instruct the cell how to live (eg. eat and divide) and therefore they must be duplicated prior to cell division such that each new cell receives a copy of these instructions. This process of DNA duplication is called "replication" and it is performed in a series of complicated steps many of which have yet to be precisely defined. Each step is performed by a different protein molecule and therefore several "replication proteins" are needed to duplicate DNA. These several replication proteins assemble together to form a multiprotein complex in which each protein occupies a distinct position where it can carry out its individual function in the overall process. The multiprotein complex is analogous to a machine in which each gear performs a function, except here the gears are proteins and each protein performs a function. Recently this laboratory showed that one of the gears of this "replication machine" of the bacterium, Escherichia coli, is a protein shaped like a washer (ie. a ring) and completely encircles the strands of DNA for the purpose of tethering the replication machine down to DNA so it can eff iciently perform its function. Each of the replication proteins for this bacterium are now available in separate test tubes and we have learned how to assemble the machine from these separate gears. With these individual protein reagents and the knowledge of how they assemble into a machine, this proposal aims to determine what the function is of other individual proteins, or gears, of this replication machine as it duplicates the two strands of DNA. ***
复制大肠杆菌染色体的聚合酶,DNA聚合酶III全酶(polIII),由10个不同的亚基组成。作为一种全酶,polIII水解ATP,使其与DNA紧密结合,从而实现高度的DNA合成。该全酶可分解成亚基:核心聚合酶3亚基@亚基(聚合酶),@亚基(3′-5′外切酶)和0亚基,5亚基y复合物(y@@xy亚基);B亚基和t亚基。y复合物的功能是与ATP偶联,将B亚基传递给DNA。B亚基是一个二聚体,形状像一个环(x射线分析),完全包围DNA。然后,B环与核心聚合酶结合,将其与DNA结合,进行高进程合成。t亚基二聚体将两个核心聚合酶结合在一起,可能是为了同时合成双染色体的前导链和滞后链。后链的合成是不连续的,由大约300个片段(冈崎片段)组成。因此,每次后链上的polIII完成一个冈崎片段时,它必须能够从片段的末端迅速再循环以启动新片段的合成。然而,polIII通过B亚基环与DNA紧密结合,因此它仍然与完整的产物DNA紧密结合,而不是循环到新的引物模板。我们最近发现了一种机制,使脊髓灰质炎病毒快速循环到新的DNA模板。该机制需要polIII结构的一种新的分解,随后是重组,其中polIII在完成DNA模板复制后特异性地脱离其B环,然后在新的DNA分子上与B环重新组装。本研究旨在发现这种聚合酶转移事件背后的详细分子基础。新试剂和技术对所提出的工作很重要,包括polIII的10个亚基中的每一个的大量纯制剂,以及从这些单个蛋白质重建整个全酶的能力。因此,我们建议进行一系列亚基遗漏研究,以确定哪些亚基负责从polIII中分离B环,哪些亚基需要将聚合酶转移到另一个DNA分子上的下一个B环上。我们还将研究当聚合酶循环到多个模板时留在DNA上的B环是如何从DNA中移除以最终重新利用的。然后,我们将开发一个复制叉系统,以研究在双链DNA的合成过程中,polIII的哪些亚基需要与解旋酶和引物酶进行有效的相互作用。遗传物质以两条长而缠绕的脱氧核糖核酸链或DNA的形式存在。这两条DNA链包含指示细胞如何生存所需的信息。进食和分裂),因此它们必须在细胞分裂之前被复制,这样每个新细胞都会收到这些指令的副本。这种DNA复制的过程被称为“复制”,它是通过一系列复杂的步骤来完成的,其中许多步骤还没有被精确地定义。每一步都是由不同的蛋白质分子完成的,因此需要几个“复制蛋白质”来复制DNA。这几个复制蛋白聚集在一起形成一个多蛋白复合物,其中每个蛋白质占据一个独特的位置,在整个过程中它可以执行其单独的功能。多蛋白复合体类似于一台机器,其中每个齿轮执行一个功能,除了这里的齿轮是蛋白质和每个蛋白质执行一个功能。最近,该实验室表明,大肠杆菌这种细菌的“复制机器”的齿轮之一是一种形状像洗衣机(即洗衣机)的蛋白质。(一个环)并完全包围DNA链,目的是将复制机器与DNA捆绑在一起,以便它能有效地发挥作用。这种细菌的每一种复制蛋白现在都可以在不同的试管中获得,我们已经学会了如何用这些不同的齿轮组装机器。有了这些单独的蛋白质试剂,以及它们如何组装成一台机器的知识,这个提议的目的是确定复制机器中其他单独的蛋白质或齿轮的功能,因为它复制了两条DNA链。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael O'Donnell其他文献

ONCOLOGIC OUTCOMES OF GEMCITABINE-DOCETAXEL COMBINATION INTRAVESICAL BLADDER SPARING THERAPY COMPARED TO UPFRONT RADICAL CYSTECTOMY IN BCG-UNRESPONSIVE NON-MUSCLE INVASIVE BLADDER CANCER
  • DOI:
    10.1016/j.urolonc.2024.01.160
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Drupad Annapureddy;Jacob Taylor;Jeffrey Howard;Solomon L. Woldu;Yair Lotan;Wei Shen Tan;Ashish Kamat;Ian M. McElree;Vignesh T. Packiam;Michael O'Donnell;Davaro Facundo;Roger Li;Kendrick Yim;Mark A. Preston;Stephen Harrington;Elizabeth Dyer;Jay Raman;Anna Black;Peter Black;Pratik Kanabur
  • 通讯作者:
    Pratik Kanabur
PPTLBA-02 BLUE LIGHT FLEXIBLE CYSTOSCOPY (BLFC) WITH HEXAMINOLEVULINATE (HAL) AND WHITE LIGHT FLEXIBLE CYSTOSCOPY: A PROSPECTIVE, COMPARATIVE, WITHIN-PATIENT CONTROLLED MULTI-CENTER PHASE 3 STUDY IN THE DETECTION OF BLADDER CANCER DURING SURVEILLANCE
  • DOI:
    10.1016/j.juro.2017.03.075
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Siamak Daneshmand;Sanjay Patel;Yair Lotan;Kamal Pohar;Edouard Trabulsi;Michael Woods;Tracy Downs;William Huang;Jennifer Taylor;Michael O'Donnell;Trinity Bivalacqua;Joel DeCastro;Gary Steinberg;Ashish Kamat;Matthew Resnick;Badrinath Konety;Mark Schoenberg;Stephen Jones
  • 通讯作者:
    Stephen Jones
MP26-20 SEQUENTIAL INTRAVESICAL GEMCITABINE AND DOCETAXEL FOR THE SALVAGE TREATMENT OF NON-MUSCLE INVASIVE BLADDER CANCER
  • DOI:
    10.1016/j.juro.2015.02.1142
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ryan Steinberg;Lewis Thomas;Michael O'Donnell;Kenneth Nepple
  • 通讯作者:
    Kenneth Nepple
Appraisal Analysis and the Computer
评估分析和计算机
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael O'Donnell
  • 通讯作者:
    Michael O'Donnell
The SMC5/6 complex exhibits dynamic binding on double-stranded DNA, but binds stably to branched DNA
  • DOI:
    10.1016/j.bpj.2022.11.596
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Jeremy T. Chang;Shibai Li;Emily Beckwitt;Thane Than;Cory Haluska;Joshua Chandanani;Michael O'Donnell;Xiaolan Zhao;Shixin Liu
  • 通讯作者:
    Shixin Liu

Michael O'Donnell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael O'Donnell', 18)}}的其他基金

I-Corps: A bisulfite-free method of quantifying the methylation patterns for detecting cancer recurrence in blood
I-Corps:一种无亚硫酸氢盐的定量甲基化模式的方法,用于检测血液中的癌症复发
  • 批准号:
    2131361
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Theory and Implementation of Equational Logic Programming
方程逻辑编程的理论与实现
  • 批准号:
    9016905
  • 财政年份:
    1991
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Rigorous Mathematical Sciences Curriculum for the Humanities and Social Sciences
严谨的人文社会科学数学科学课程
  • 批准号:
    8950775
  • 财政年份:
    1990
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
The University of Chicago Computer Science Laboratory
芝加哥大学计算机科学实验室
  • 批准号:
    8822657
  • 财政年份:
    1989
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Theory and Implementation of Equational Logic Programming
方程逻辑编程的理论与实现
  • 批准号:
    8805503
  • 财政年份:
    1988
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Biochemical Mechanism of DNA Polymerase III Holoenzyme
DNA聚合酶III全酶的生化机制
  • 批准号:
    8706000
  • 财政年份:
    1987
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
A Proposal for Research on Equational Logic as a Programming Language
研究方程逻辑作为编程语言的建议
  • 批准号:
    8601843
  • 财政年份:
    1986
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似海外基金

Molecular hand-off mechanisms during lagging strand replication
滞后链复制过程中的分子传递机制
  • 批准号:
    BB/K021540/1
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Targeting lagging strand DNA replication in model and pathogenic bacteria
靶向模型和病原菌中的滞后链 DNA 复制
  • 批准号:
    nhmrc : 1007947
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Project Grants
Primase to polymerase switch at the lagging strand of the bacterial replication fork
细菌复制叉滞后链处的引物酶到聚合酶的转换
  • 批准号:
    208805693
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grants
Coordination of HSV Lagging Strand Synthesis
HSV 滞后链合成的协调
  • 批准号:
    8003014
  • 财政年份:
    2010
  • 资助金额:
    $ 27万
  • 项目类别:
Coordination of HSV Lagging Strand Synthesis
HSV 滞后链合成的协调
  • 批准号:
    7150138
  • 财政年份:
    2006
  • 资助金额:
    $ 27万
  • 项目类别:
Coordination of HSV Lagging Strand Synthesis
HSV 滞后链合成的协调
  • 批准号:
    7664929
  • 财政年份:
    2006
  • 资助金额:
    $ 27万
  • 项目类别:
Coordination of HSV Lagging Strand Synthesis
HSV 滞后链合成的协调
  • 批准号:
    7472301
  • 财政年份:
    2006
  • 资助金额:
    $ 27万
  • 项目类别:
Coordination of HSV Lagging Strand Synthesis
HSV 滞后链合成的协调
  • 批准号:
    7256448
  • 财政年份:
    2006
  • 资助金额:
    $ 27万
  • 项目类别:
Molecular Mechanism of Chromosomal DNA Replication Apparatus
染色体DNA复制仪的分子机制
  • 批准号:
    08277102
  • 财政年份:
    1996
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
INITIATION OF LAGGING-STRAND SYNTHESIS
滞后链合成的启动
  • 批准号:
    2177494
  • 财政年份:
    1984
  • 资助金额:
    $ 27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了