RIA: Efficient and Accurate Prediction Systems for Large Scale Problems
RIA:针对大规模问题的高效、准确的预测系统
基本信息
- 批准号:9308523
- 负责人:
- 金额:$ 16.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-07-01 至 1997-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Neural network technology has the potential to solve an impressive variety of today's technological problems which conventional computers are quite powerless to deal with. The first applications of neural networks technology have been limited to relatively small problems, and therefore systems scaling was not a primary issue. Neural networks for real-life problems usually consist of a large numbers of interconnected processors working in parallel. The objective of this proposal is a deeper investigation into the computational and learning abilities of neural networks for such large scale problems. In particular, the computational models and topologies best suited for large scale problems, and efficient and accurate learning techniques for such resource- bounded parallel machine will be investigated. The results will be evaluated on two challenging real-life problems from electrical engineering and molecular biology (mixed-signal integrated circuits testing and protein structure prediction). The proposed work is based on recent results: (1) a discrete multivalued neural networks model that can be used as a tool for reasoning about the computational scaling abilities of various neural network architectures; (2) efficient neural network learning algorithms that generalize well starting with pre-existing symbolic knowledge and incorporating additional constructive learning from examples.//
神经网络技术有可能解决一个 当今各种令人印象深刻的技术问题 传统的计算机是无能为力的。 第一 神经网络技术的应用已经被限制在 相对较小的问题,因此系统扩展不是一个 首要问题。 神经网络解决现实问题通常 由大量相互连接的处理器组成, 并联 这项建议的目的是进行更深入的调查 神经网络的计算和学习能力 对于如此大规模的问题。 特别是,计算 最适合大规模问题的模型和拓扑,以及 有效和准确的学习技术,这样的资源- 有界并行机将被研究。 结果将 评估了两个具有挑战性的现实生活中的问题,从电气 工程和分子生物学(混合信号集成电路 测试和蛋白质结构预测)。 拟议的工作是 基于最近的结果:(1)离散多值神经网络 网络模型,可用作推理的工具, 各种神经网络的计算缩放能力 (2)高效的神经网络学习算法 从预先存在的符号知识开始, 并从示例中融入额外的建设性学习。//
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zoran Obradovic其他文献
Dynamic Self-paced Sampling Ensemble for Highly Imbalanced and Class-overlapped Data Classification
- DOI:
https://doi.org/10.1007/s10618-022-00838-z - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Fang Zhou;Suting Gao;Lyn Ni;Martin Pavlovski;Qiwen Dong;Zoran Obradovic;Weining Qian - 通讯作者:
Weining Qian
Margin-Based Feature Selection in Incomplete Data
不完整数据中基于边际的特征选择
- DOI:
10.1609/aaai.v26i1.8299 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Qiang Lou;Zoran Obradovic - 通讯作者:
Zoran Obradovic
A search for interaction among combinations of drugs of abuse and the use of isobolographic analysis
寻找滥用药物组合之间的相互作用以及等辐射线分析的使用
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2
- 作者:
Ronald J. Tallarida;U. Midic;Neil S. Lamarre;Zoran Obradovic - 通讯作者:
Zoran Obradovic
Semi-Supervised Learning on Single-View Datasets by Integration of Multiple Co-trained Classifiers
通过集成多个共同训练的分类器对单视图数据集进行半监督学习
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jelena Slivka;Ping Zhang;Aleksandar Kovačević;Z. Konjovic;Zoran Obradovic - 通讯作者:
Zoran Obradovic
Exploring Bias in the Protein Data Bank Using Contrast Classifiers
使用对比分类器探索蛋白质数据库中的偏差
- DOI:
10.1142/9789812704856_0041 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Kang Peng;Zoran Obradovic;S. Vucetic - 通讯作者:
S. Vucetic
Zoran Obradovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zoran Obradovic', 18)}}的其他基金
US-Serbia and West Balkan Data Science Workshop
美国-塞尔维亚和西巴尔干数据科学研讨会
- 批准号:
1818661 - 财政年份:2018
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
EAGER: Assessing Influence of News Articles on Emerging Events
EAGER:评估新闻文章对新兴事件的影响
- 批准号:
1842183 - 财政年份:2018
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: SOUTH: Collaborative: Smart Grids Big Data
BD Spokes:SPOKE:SOUTH:协作:智能电网大数据
- 批准号:
1636770 - 财政年份:2016
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
Collaborative Research: Data Mining Support for Retrieval and Analysis of Geophysical Parameters
协作研究:数据挖掘支持地球物理参数检索和分析
- 批准号:
0612149 - 财政年份:2006
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
ITR/SMALL/Scientific Frontiers: Task-Specific Data Reduction and Mining in Spatial-Temporal Domains
ITR/小/科学前沿:时空域中特定任务的数据缩减和挖掘
- 批准号:
0219736 - 财政年份:2002
- 资助金额:
$ 16.12万 - 项目类别:
Continuing Grant
Intelligent Data Analysis for Identifying Protein Disorder
用于识别蛋白质紊乱的智能数据分析
- 批准号:
0196237 - 财政年份:2000
- 资助金额:
$ 16.12万 - 项目类别:
Continuing Grant
Intelligent Data Analysis for Identifying Protein Disorder
用于识别蛋白质紊乱的智能数据分析
- 批准号:
9711532 - 财政年份:1998
- 资助金额:
$ 16.12万 - 项目类别:
Continuing Grant
相似海外基金
Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
- 批准号:
24K16962 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: A Theoretical Exploration of Efficient and Accurate Clustering Algorithms
职业生涯:高效准确聚类算法的理论探索
- 批准号:
2337832 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Continuing Grant
Efficient and accurate scaling Graph Neural Networks for giant graphs
针对巨型图的高效、准确的缩放图神经网络
- 批准号:
24K20787 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
- 批准号:
10638121 - 财政年份:2023
- 资助金额:
$ 16.12万 - 项目类别:
SBIR Phase I: A hybrid phasor/waveform simulation tool for the accurate and efficient simulation of large electric power systems with high shares of inverter-based resources
SBIR 第一阶段:一种混合相量/波形仿真工具,用于精确高效地仿真具有高份额逆变器资源的大型电力系统
- 批准号:
2321329 - 财政年份:2023
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
CDS&E: ECCS: Accurate and Efficient Uncertainty Quantification and Reliability Assessment for Computational Electromagnetics and Engineering
CDS
- 批准号:
2305106 - 财政年份:2023
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309548 - 财政年份:2023
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
Improving patient safety and hospital hygiene through the efficient and accurate identification of patients with antimicrobial resistant organisms (AROs) using clinical support tools in electronic medical records
使用电子病历中的临床支持工具高效、准确地识别抗菌药物耐药微生物 (ARO) 患者,提高患者安全和医院卫生
- 批准号:
478042 - 财政年份:2023
- 资助金额:
$ 16.12万 - 项目类别:
Operating Grants
Phylogenetic and computational methods for accurate and efficient analyses of large-scale metagenomics datasets
用于准确有效分析大规模宏基因组数据集的系统发育和计算方法
- 批准号:
10542443 - 财政年份:2022
- 资助金额:
$ 16.12万 - 项目类别: