Low Dimensional Magnetic and Electronic Systems

低维磁和电子系统

基本信息

  • 批准号:
    9312476
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1993
  • 资助国家:
    美国
  • 起止时间:
    1993-08-01 至 1999-07-31
  • 项目状态:
    已结题

项目摘要

9312476 Fowler This research studies low-dimensional strongly interacting magnetic and electronic systems which are increasingly important in condensed matter physics for understanding high temperature superconductivity, mesoscopic systems and anisotropic materials. The approach uses exact solutions, usually solved by the Bethe Ansatz, of one-dimensional strongly interacting models which are physically plausible. However, the exact solutions for these so- called integrable systems are often difficult to interpret physically and apply to higher dimension systems. Systems which will be studied during the grant period include the XXZ spin chain, sine-Gordon thermodynamics, Calogero-type systems and the Toda lattice. %%% The theoretical research being done on this grant uses highly mathematical techniques to obtain exact solutions of model physical systems. In most cases, these exact solutions can only be obtained in dimensions lower than the three dimensions in which we live. Thus, the applicability of these solutions to the real world is not always clear. On the other hand, it is nearly impossible so far to obtain exact solutions of three-dimensional systems and many materials have characteristics of lower dimensional systems. Thus, judicious use of exact solutions in lower dimensions can help us understand properties of real physical systems. This is particularly the case with high temperature superconductors, certain mesoscopic electronic devices and anisotropic materials in general. ***
9312476 Fowler本研究研究低维强相互作用的磁性和电子系统,这些系统在凝聚态物理学中对于理解高温超导性,介观系统和各向异性材料越来越重要。 该方法使用精确的解决方案,通常解决的贝特Anglands,一维强相互作用的模型是物理上合理的。 然而,这些所谓的可积系统的精确解往往很难物理解释,也很难应用于高维系统。 在资助期间将研究的系统包括XXZ自旋链,正弦戈登热力学,Calogero型系统和户田晶格。 %在这个基金上进行的理论研究, 数学技术,以获得模型物理系统的精确解。 在大多数情况下,这些精确解只能在低于我们生活的三维的维度中获得。 因此,这些解决方案对真实的世界的适用性并不总是清楚的。 另一方面,三维系统的精确解几乎是不可能的,许多材料具有低维系统的特性。 因此,在较低维度中明智地使用精确解可以帮助我们理解真实的物理系统的性质。 对于高温超导体、某些介观电子器件和一般的各向异性材料,情况尤其如此。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Fowler其他文献

Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia
新斯科舍省海上风电制氨系统的设计与分析
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Carlo Cunanan;Carlos Andrés Elorza Casas;Mitchell Yorke;Michael Fowler;Xiao
  • 通讯作者:
    Xiao
Experimental estimation of heat generating parameters for battery module using inverse prediction method
基于逆预测方法的电池模块产热参数实验估计
Carvedilol initiation by community physicians in COHORE: comparison with U.S. carvedilol trials and compassionate use protocols
  • DOI:
    10.1016/s0735-1097(02)82073-3
  • 发表时间:
    2002-03-06
  • 期刊:
  • 影响因子:
  • 作者:
    Barry M. Massie;Barry Greenberg;Edward M. Gilbert;Michael Fowler;William T. Abraham;Joseph A. Franclosa;Mary Ann Lukas;Jeanenne J. Nelson
  • 通讯作者:
    Jeanenne J. Nelson
Using Excel to Simulate Pendulum Motion and Maybe Understand Calculus a Little Better
  • DOI:
    10.1007/s11191-004-6731-1
  • 发表时间:
    2004-11-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Michael Fowler
  • 通讯作者:
    Michael Fowler
State of health estimation of lithium-ion batteries based on the fusion of aging feature extraction and SSA-ELM machine learning algorithms
  • DOI:
    10.1007/s11581-025-06454-3
  • 发表时间:
    2025-06-06
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Yiwei Fan;Haonan Yang;Congjin Ye;Wen Yang;Satyam Panchal;Roydon Fraser;Michael Fowler;Huifang Dong
  • 通讯作者:
    Huifang Dong

Michael Fowler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Fowler', 18)}}的其他基金

Multigenerational Trophic Responses to Coupled Short- and Long-term Environmental Change
对短期和长期环境变化耦合的多代营养反应
  • 批准号:
    NE/W006731/1
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
Interactions between sources of environmental change: How do resource quality and coloured environments drive multi-trophic eco-evolutionary dynamics?
环境变化来源之间的相互作用:资源质量和彩色环境如何驱动多营养生态进化动态?
  • 批准号:
    NE/N002849/1
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
Low Dimensional Magnetic and Electronic Systems
低维磁和电子系统
  • 批准号:
    8810541
  • 财政年份:
    1989
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Twenty-Fifth Eastern Theoretical Physics Conference; Charlottesville, Virginia; October 24-25, l986
第二十五届东方理论物理会议;
  • 批准号:
    8607937
  • 财政年份:
    1986
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Theory of Spin Chains (Materials Research)
自旋链理论(材料研究)
  • 批准号:
    8404955
  • 财政年份:
    1984
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Theory of Spin Chains
自旋链理论
  • 批准号:
    8106108
  • 财政年份:
    1981
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Magnetic and electronic excitations in low-dimensional and nanostructured materials
低维和纳米结构材料中的磁和电子激发
  • 批准号:
    RGPIN-2017-04429
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Study of 3-dimensional structure of galaxies and cosmological magnetic fields with large low-frequency polarization survey
利用大型低频极化巡天研究星系和宇宙磁场的三维结构
  • 批准号:
    21H01130
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Magnetic and electronic excitations in low-dimensional and nanostructured materials
低维和纳米结构材料中的磁和电子激发
  • 批准号:
    RGPIN-2017-04429
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Magnetic and electronic excitations in low-dimensional and nanostructured materials
低维和纳米结构材料中的磁和电子激发
  • 批准号:
    RGPIN-2017-04429
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Solution method of matrix equations via a low-dimensional simultaneous equation and an affine mapping, and its application to magnetic levitation systems
低维联立方程和仿射映射矩阵方程的求解方法及其在磁悬浮系统中的应用
  • 批准号:
    19K04282
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Magnetic and electronic excitations in low-dimensional and nanostructured materials
低维和纳米结构材料中的磁和电子激发
  • 批准号:
    RGPIN-2017-04429
  • 财政年份:
    2018
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Rational Design of Magnetic Materials Featuring Low-Dimensional Subunits
职业:具有低维亚基的磁性材料的合理设计
  • 批准号:
    1654780
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Magnetic and electronic excitations in low-dimensional and nanostructured materials
低维和纳米结构材料中的磁和电子激发
  • 批准号:
    RGPIN-2017-04429
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Orbital Magnetic Quantum Number Measurement Method and Application to the Investigation of Low-dimensional Electronic Properties
轨道磁量子数测量方法的发展及其在低维电子特性研究中的应用
  • 批准号:
    17H02911
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamical processes in nanostructured and low-dimensional magnetic materials
纳米结构和低维磁性材料的动力学过程
  • 批准号:
    36357-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了