Inverse Models and Orthogonal Decompositions in Geophysical Flow
地球物理流中的反演模型和正交分解
基本信息
- 批准号:9312760
- 负责人:
- 金额:$ 19.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-12-15 至 1998-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ATM-9312760 Haupt, Sue Ellen University of Colorado, Boulder Title: Inverse Models and Orthogonal Decompositions in Geophysical Flow The purpose of this project is to simultaneously apply proper orthogonal decomposition and linear inverse methods to produce simple, easy-to-run, fast models which reproduce the statistics of more complicated models. First, a linear inverse model based on the empirical orthogonal functions (EOFs) of a series of runs of the Shallow Water Equations (SWE) will be developed. The SWE were chosen for ease of comparison with previous and ongoing studies. This simple inverse model will include the EOFs, their tendencies, and statistical noise. EOFs will then be used to construct an inverse model of the Community Climate Model of NCAR. Such an inverse model has not yet been applied to climate models to our knowledge. Thus a simple (fast, easy-to-run) climate model with statistics identical to the full climate model on which it was based will be constructed. Such a model will be useful for instances where the statistics need be to reproduced, but for which the exact time development is not essential. Various sensitivity analyses will be performed to determine the best methods to construct these models. This line of research will lead to a new method to decrease the number of degrees of freedom necessary to obtain adequate resolution in some geophysical models. In addition, it will give new insight into the interactions of the empirical modes of motion. This work is preliminary to developing s fully nonlinear climate model based on orthogonal projections. It is important because it would facilitate the testing of climate hypotheses which require credible but simple (computationally cheap) climate models. This research is funded under the NSF USGCRP CMAP program.
题目:地球物理流中的逆模型和正交分解本项目的目的是同时应用适当的正交分解和线性逆方法来生成简单、易于运行、快速的模型,这些模型可以再现更复杂模型的统计数据。首先,建立了基于浅水方程(SWE)一系列运行的经验正交函数(EOFs)的线性逆模型。选择SWE是为了便于与以前和正在进行的研究进行比较。这个简单的逆模型将包括EOFs、它们的趋势和统计噪声。然后,EOFs将用于构建NCAR群落气候模型的逆模型。据我们所知,这样一个逆模型还没有应用到气候模型中。因此,一个简单(快速、易于运行)的气候模型将被构建,其统计数据与作为其基础的完整气候模型相同。这样的模型对于需要复制统计数据的实例是有用的,但是对于这些实例来说,精确的时间开发不是必需的。将进行各种敏感性分析,以确定构建这些模型的最佳方法。这一研究路线将导致一种新的方法,以减少在某些地球物理模型中获得足够分辨率所需的自由度数量。此外,它将为运动的经验模式的相互作用提供新的见解。这项工作为建立一个基于正交预估的完全非线性气候模型奠定了基础。它之所以重要,是因为它将有助于测试需要可靠但简单(计算成本低)的气候模型的气候假设。本研究由NSF USGCRP CMAP项目资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sue Ellen Haupt其他文献
Performance analysis of a 10-MW wind farm in a hot and dusty desert environment. Part 1: Wind resource and power generation evaluation
- DOI:
10.1016/j.seta.2021.101487 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:
- 作者:
Majed Al-Rasheedi;Mohammad Al-Khayat;Christian A. Gueymard;Sue Ellen Haupt;Branko Kosović;Ayman Al-Qattan;Jared A. Lee - 通讯作者:
Jared A. Lee
Weather and Climate Science in the Digital Era
数字时代的天气和气候科学
- DOI:
10.5194/gc-2019-22 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Martine G. de Vos;W. Hazeleger;D. Bari;Jorg Behrens;S. Bendoukha;Irene Garcia‐Marti;R. van Haren;Sue Ellen Haupt;R. Hut;Fredrik Jansson;Andreas Mueller;Peter Neilley;Gijs van den Oord;I. Pelupessy;P. Ruti;Martin G. Schultz;Jeremy Walton - 通讯作者:
Jeremy Walton
Improving SCIPUFF Dispersion Forecasts with NWP Ensembles
利用数值天气预报集合改进 SCIPUFF 频散预报
- DOI:
10.1175/2009jamc2171.1 - 发表时间:
2009 - 期刊:
- 影响因子:3
- 作者:
Jared A. Lee;L. Joel Peltier;Sue Ellen Haupt;J. Wyngaard;D. Stauffer;A. Deng - 通讯作者:
A. Deng
Performance analysis of a 10-MW wind farm in a hot and dusty desert environment. Part 2: Combined dust and high-temperature effects on the operation of wind turbines
- DOI:
10.1016/j.seta.2021.101461 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:
- 作者:
Mohammad Al-Khayat;Majed Al-Rasheedi;Christian A. Gueymard;Sue Ellen Haupt;Branko Kosović;Ayman Al-Qattan;Jared A. Lee - 通讯作者:
Jared A. Lee
Forecasting energy poverty using different machine learning techniques for Missouri
- DOI:
10.1016/j.energy.2024.133904 - 发表时间:
2024-12-30 - 期刊:
- 影响因子:
- 作者:
Sarah Balkissoon;Neil Fox;Anthony Lupo;Sue Ellen Haupt;Stephen G. Penny;Steve J. Miller;Margaret Beetstra;Michael Sykuta;Adrienne Ohler - 通讯作者:
Adrienne Ohler
Sue Ellen Haupt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sue Ellen Haupt', 18)}}的其他基金
Numerical Equilibrium Solutions of the Quasi-Geostrophic Vorticity Equation
准地转涡度方程的数值平衡解
- 批准号:
9011413 - 财政年份:1990
- 资助金额:
$ 19.86万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
- 批准号:
RGPIN-2017-06166 - 财政年份:2021
- 资助金额:
$ 19.86万 - 项目类别:
Discovery Grants Program - Individual
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
- 批准号:
RGPIN-2017-06166 - 财政年份:2020
- 资助金额:
$ 19.86万 - 项目类别:
Discovery Grants Program - Individual
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
- 批准号:
RGPIN-2017-06166 - 财政年份:2019
- 资助金额:
$ 19.86万 - 项目类别:
Discovery Grants Program - Individual
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
- 批准号:
RGPIN-2017-06166 - 财政年份:2018
- 资助金额:
$ 19.86万 - 项目类别:
Discovery Grants Program - Individual
The Arithmetic and Geometry of Integral Models of Orthogonal Shimura Varieties
正交志村品种积分模型的算术和几何
- 批准号:
1803623 - 财政年份:2017
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
- 批准号:
RGPIN-2017-06166 - 财政年份:2017
- 资助金额:
$ 19.86万 - 项目类别:
Discovery Grants Program - Individual
The Arithmetic and Geometry of Integral Models of Orthogonal Shimura Varieties
正交志村品种积分模型的算术和几何
- 批准号:
1502142 - 财政年份:2015
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
New Models and Methods for the Effective Orthogonal Layout of Graphs
图的有效正交布局的新模型和方法
- 批准号:
249458560 - 财政年份:2014
- 资助金额:
$ 19.86万 - 项目类别:
Research Grants
CMG Research: Enhanced Empirical Orthogonal Function (EOF) Representations and Time-varying Statistical Models for Climate Patterns
CMG 研究:气候模式的增强经验正交函数 (EOF) 表示和时变统计模型
- 批准号:
1025374 - 财政年份:2010
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
Rational Models and Dynamical Characterization of Fatigue using Phase Space Warping and Smooth Orthogonal Decomposition
使用相空间扭曲和平滑正交分解的有理模型和疲劳动态表征
- 批准号:
0758536 - 财政年份:2008
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant














{{item.name}}会员




