Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models

量子信息传输、代数表示、正交多项式和(超)可积模型

基本信息

  • 批准号:
    RGPIN-2017-06166
  • 负责人:
  • 金额:
    $ 4.08万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Theoretical physics attempts to understand nature by offering mathematical models of various phenomena. The validation of those descriptions and the determination of the predictions they entail require a detailed understanding of the dynamics of those systems. This is what is meant by « solving a model » and the better if this can be done exactly. It is therefore important to develop the mathematics, the tools, that will make possible the exact solution of a growing number of relevant dynamical systems and will help in the design of rich and sophisticate physical models.******The research of Luc Vinet will do precisely that. He will design devices relevant for quantum computers. He will work with experimentalists to validate his theoretical predictions. He will develop new mathematics that will advance the exact solutions of various problems and he will find new models whose dynamics can be fully understood.******For quantum information to operate, qubits i.e. quantum states need to be transported efficiently between locations. A resource known as quantum entanglement, ebits, must also be available. Luc Vinet will explore how one can use physical systems known as quantum spin chains to achieve those tasks. ******The dynamics of spin chains can be reproduced in photonic lattices formed by arrays of coupled waveguides. Luc Vinet will work with experimentalists to implement the transport of qubits and the generation of ebits in arrays engineered according to the specifications of the spin chains he will have identified for that purpose.******A high level of symmetry is typically a feature of systems admitting an exact solution. An expert of those questions, Luc Vinet will advance the mathematics associated with that key word which are referred to as algebra and representation theory. He will find new structures apt to describe situations of invariance and will also identify new functions often called special that encode symmetries through their properties.******Luc Vinet also has strategies to construct new models with a lot of symmetries called superintegrable that are the hallmark of exactly solvable models. He will bring new mathematical results to bear on their study and will explore their phenomenology and applications
理论物理试图通过提供各种现象的数学模型来理解自然。验证这些描述和确定它们所需的预测需要对这些系统的动态有详细的了解。这就是“解决一个模型”的意思,如果能精确地完成就更好了。因此,重要的是要发展数学,工具,这将使越来越多的相关动力系统的精确解成为可能,并将有助于设计丰富和可扩展的物理模型。Luc Vinet的研究正是这样做的。他将设计与量子计算机相关的设备。他将与实验学家合作,以验证他的理论预测。他将开发新的数学,将推进各种问题的精确解决方案,他将找到新的模型,其动力学可以完全理解。为了使量子信息运行,量子比特(即量子态)需要在位置之间有效地传输。一种被称为量子纠缠(ebits)的资源也必须可用。Luc Vinet将探索如何使用被称为量子自旋链的物理系统来实现这些任务。** 自旋链的动力学可以在由耦合波导阵列形成的光子晶格中再现。Luc Vinet将与实验人员合作,根据他为此目的确定的自旋链的规格,在设计的阵列中实现量子比特的传输和ebit的生成。高度对称性是系统的一个典型特征,它允许有精确解。作为这些问题的专家,Luc Vinet将推进与这个关键词相关的数学,这些关键词被称为代数和表示论。他将发现新的结构,易于描述不变性的情况,也将确定新的功能,通常被称为特殊的编码对称性,通过其属性。Luc Vinet也有策略来构建具有大量对称性的新模型,称为超可积模型,这是精确可解模型的标志。他将带来新的数学成果,承担他们的研究,并将探讨他们的现象学和应用

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vinet, Luc其他文献

Analytic next-to-nearest-neighbor XX models with perfect state transfer and fractional revival
  • DOI:
    10.1103/physreva.96.032335
  • 发表时间:
    2017-09-25
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Christandl, Matthias;Vinet, Luc;Zhedanov, Alexei
  • 通讯作者:
    Zhedanov, Alexei
On the Discretization of the Coupled Integrable Dispersionless Equations

Vinet, Luc的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vinet, Luc', 18)}}的其他基金

Symmetries: Algebra and Physics
对称性:代数和物理
  • 批准号:
    RGPIN-2022-04708
  • 财政年份:
    2022
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
  • 批准号:
    RGPIN-2017-06166
  • 财政年份:
    2021
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
  • 批准号:
    RGPIN-2017-06166
  • 财政年份:
    2020
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
THE CRM: 50 years of shaping mathematical sciences in Canada
THE CRM:加拿大数学科学发展 50 年
  • 批准号:
    342065-2014
  • 财政年份:
    2020
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Thematic Resources Support in Mathematics and Statistics
THE CRM: 50 years of shaping mathematical sciences in Canada
THE CRM:加拿大数学科学发展 50 年
  • 批准号:
    342065-2014
  • 财政年份:
    2019
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Thematic Resources Support in Mathematics and Statistics
THE CRM: 50 years of shaping mathematical sciences in Canada
THE CRM:加拿大数学科学发展 50 年
  • 批准号:
    342065-2014
  • 财政年份:
    2018
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Thematic Resources Support in Mathematics and Statistics
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
  • 批准号:
    RGPIN-2017-06166
  • 财政年份:
    2018
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
  • 批准号:
    RGPIN-2017-06166
  • 财政年份:
    2017
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
THE CRM: 50 years of shaping mathematical sciences in Canada
THE CRM:加拿大数学科学发展 50 年
  • 批准号:
    342065-2014
  • 财政年份:
    2017
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Thematic Resources Support in Mathematics and Statistics
Exactly Solving Physical Systems: Methods and Applications
精确求解物理系统:方法与应用
  • 批准号:
    9428-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: NSF-DFG: Confine: Sculpting Confined Fluids for Transport using Self-Organization and Information Transfer
合作研究:NSF-DFG:限制:利用自组织和信息传输塑造受限流体以进行运输
  • 批准号:
    2234135
  • 财政年份:
    2022
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-DFG: Confine: Sculpting Confined Fluids for Transport using Self-Organization and Information Transfer
合作研究:NSF-DFG:限制:利用自组织和信息传输塑造受限流体以进行运输
  • 批准号:
    2234134
  • 财政年份:
    2022
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Standard Grant
Quantum Information-Constrained Optimal Transport
量子信息约束最优传输
  • 批准号:
    580847-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Alliance Grants
Portfolio theory, optimal transport and information geometry
投资组合理论、最优传输和信息几何
  • 批准号:
    RGPIN-2019-04419
  • 财政年份:
    2022
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Portfolio theory, optimal transport and information geometry
投资组合理论、最优传输和信息几何
  • 批准号:
    RGPIN-2019-04419
  • 财政年份:
    2021
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
  • 批准号:
    RGPIN-2017-06166
  • 财政年份:
    2021
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Spin-valley information and energy transport via directed exciton currents in two-dimensional semiconductors
二维半导体中通过定向激子电流的自旋谷信息和能量传输
  • 批准号:
    462503440
  • 财政年份:
    2021
  • 资助金额:
    $ 4.08万
  • 项目类别:
    WBP Fellowship
Portfolio theory, optimal transport and information geometry
投资组合理论、最优传输和信息几何
  • 批准号:
    RGPIN-2019-04419
  • 财政年份:
    2020
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
  • 批准号:
    RGPIN-2017-06166
  • 财政年份:
    2020
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Revolution of semiconductor bulk crystal growth technique by transport phenomena combined with information technology
输运现象与信息技术相结合的半导体块晶生长技术的革命
  • 批准号:
    20H00320
  • 财政年份:
    2020
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了