Digital Control of Nonlinear Processes
非线性过程的数字控制
基本信息
- 批准号:9403432
- 负责人:
- 金额:$ 23.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-05-01 至 1998-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract - Kravaris - 9403432 The chemical industry is dominated by processes that exhibit nonlinearities. For example, polymerization reactors, high-purity distillation columns, bioprocesses, etc. are highly nonlinear processes. The digital computer-based implementation of nonlinear control laws in industry has motivated the development of nonlinear, discrete-time process control methods. The cornerstone of all the discrete-time control algorithms is the inevitable time-discretization of a continuous-time, nonlinear dynamic system, which is an open problem. The development of a reliable discretization procedure for nonlinear, continuous-time systems, especially when the sampling period becomes large, based on the fact that in many industrial control problems, certain measurements are performed at low sampling rates. For example, chemical composition measurements are usually performed under a much lower sampling rate (e.g. gas chromatography) compared to temperature measurements. The overall objective of this research is the development of methods for analyzing the behavior of nonlinear chemical processes subject to slow sampling and synthesizing stable and robust, digital control systems that meet design specifications. The conceptual framework of differential geometry will be use to: 1. Develop a time-discretization procedure for nonlinear, continuous-time systems, especially where the sampling period becomes large. 2. Study the effect of sampling and the particular discretization procedure upon the nonminimum-phase characteristics of a nonlinear, discrete-time process model. 3. Develop nonlinear multirate control algorithms which use the infrequent and frequent measurements effectively in order to induce a desirable closed-loop behavior for the process under consideration. 4. Design discrete-time, nonlinear state estimators which will be used to reconstruct the unmeasurable state variables. 5. Experimentally verify these control strategies by application to polymerizat ion reactors.
摘要- Kravaris - 9403432 化学工业以非线性过程为主。 例如,聚合反应器、高纯度蒸馏塔、生物过程等是高度非线性的过程。 工业中基于数字计算机的非线性控制律的实现促进了非线性、离散时间过程控制方法的发展。 所有离散时间控制算法的基石是连续时间非线性动态系统的不可避免的时间离散化,这是一个开放的问题。 针对非线性、连续时间系统,特别是当采样周期变大时,基于在许多工业控制问题中,某些测量是在低采样率下进行的这一事实,开发了一种可靠的离散化方法。 例如,与温度测量相比,化学成分测量通常在低得多的采样率(例如气相色谱法)下进行。 本研究的总体目标是开发用于分析非线性化学过程的行为的方法,这些过程受到慢采样和合成满足设计规格的稳定和鲁棒的数字控制系统的影响。 微分几何的概念框架将用于:1。 为非线性、连续时间系统开发一个时间离散化程序,特别是当采样周期变大时。 2. 研究采样和离散化过程对非线性离散过程模型非最小相位特性的影响。 3. 开发非线性多速率控制算法,有效地使用不频繁和频繁的测量,以诱导一个理想的闭环行为的过程中考虑。 4. 设计离散时间,非线性状态估计器,将用于重建不可测的状态变量。 5. 并将这些控制策略应用于聚合反应器中进行了实验验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Costas Kravaris其他文献
Tracking the singular arc of a continuous bioreactor using sliding mode control
- DOI:
10.1016/j.jfranklin.2011.06.011 - 发表时间:
2012-05-01 - 期刊:
- 影响因子:
- 作者:
Costas Kravaris;Georgios Savoglidis - 通讯作者:
Georgios Savoglidis
pH Control in the Presence of Precipitation Equilibria
- DOI:
10.1016/s1474-6670(17)47075-3 - 发表时间:
1995-06-01 - 期刊:
- 影响因子:
- 作者:
Raymond A. Wright;Costas Kravaris - 通讯作者:
Costas Kravaris
Model-predictive fault-tolerant control of safety-critical processes based on dynamic safe set
- DOI:
10.1016/j.jprocont.2024.103329 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Ritu Ranjan;Costas Kravaris - 通讯作者:
Costas Kravaris
Two-Degree-of-Freedom Multirate Controllers for Nonlinear Processes
- DOI:
10.1016/s1474-6670(17)31800-1 - 发表时间:
2004-07-01 - 期刊:
- 影响因子:
- 作者:
Raymond A. Wright;Costas Kravaris - 通讯作者:
Costas Kravaris
Multi-rate Sampled-data Observer Design for Nonlinear Systems with Asynchronous and Delayed Measurements
具有异步和延迟测量的非线性系统的多速率采样数据观测器设计
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chen Ling;Costas Kravaris - 通讯作者:
Costas Kravaris
Costas Kravaris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Costas Kravaris', 18)}}的其他基金
Process diagnostics and event-driven control for safety-critical chemical processes and plants
针对安全关键的化学工艺和工厂的过程诊断和事件驱动控制
- 批准号:
2133810 - 财政年份:2021
- 资助金额:
$ 23.14万 - 项目类别:
Standard Grant
Multi-rate Nonlinear Observers for Process Monitoring, with Application to Polymerization Reactors
用于过程监控的多速率非线性观测器在聚合反应器中的应用
- 批准号:
1706201 - 财政年份:2017
- 资助金额:
$ 23.14万 - 项目类别:
Standard Grant
Optimal Operation of Fed-Batch Antibiotic Fermentations
补料分批抗生素发酵的优化操作
- 批准号:
8912627 - 财政年份:1989
- 资助金额:
$ 23.14万 - 项目类别:
Continuing Grant
Geometric Methods for Nonlinear Multivariable Process Control
非线性多变量过程控制的几何方法
- 批准号:
8912836 - 财政年份:1989
- 资助金额:
$ 23.14万 - 项目类别:
Continuing Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 23.14万 - 项目类别:
Standard Grant
Nonlinear Quantum Control Engineering
非线性量子控制工程
- 批准号:
DP240101494 - 财政年份:2024
- 资助金额:
$ 23.14万 - 项目类别:
Discovery Projects
Control of linear and nonlinear physical properties based on rational design
基于合理设计的线性和非线性物理特性的控制
- 批准号:
23K04688 - 财政年份:2023
- 资助金额:
$ 23.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ultra-high precision control of bosonic states in superconducting resonators with second-order nonlinear effects
具有二阶非线性效应的超导谐振器中玻色子态的超高精度控制
- 批准号:
22KJ0981 - 财政年份:2023
- 资助金额:
$ 23.14万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Ultrasensitive mass sensing utilizing weakly-coupled micro resonators' mode localization, with nonlinear feedback control
利用弱耦合微谐振器的模式定位和非线性反馈控制的超灵敏质量传感
- 批准号:
22KJ0428 - 财政年份:2023
- 资助金额:
$ 23.14万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Postdoctoral Fellowship: MPS-Ascend: Coherent Control of Nonlinear Schrodinger Dynamics in the Presence of Uncertainty
博士后奖学金:MPS-Ascend:不确定性情况下非线性薛定谔动力学的相干控制
- 批准号:
2316622 - 财政年份:2023
- 资助金额:
$ 23.14万 - 项目类别:
Fellowship Award
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
- 批准号:
23K03913 - 财政年份:2023
- 资助金额:
$ 23.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast and Precise Positioning Control for Industrial Robots Including Nonlinear Flexibility in Mechanism and Task Environment
工业机器人快速精确的定位控制,包括机构和任务环境中的非线性灵活性
- 批准号:
23H00181 - 财政年份:2023
- 资助金额:
$ 23.14万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Parametric deformation of control Lyapunov function for nonlinear systems and its applications
非线性系统控制Lyapunov函数的参数变形及其应用
- 批准号:
23H01430 - 财政年份:2023
- 资助金额:
$ 23.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
- 批准号:
2308639 - 财政年份:2023
- 资助金额:
$ 23.14万 - 项目类别:
Standard Grant