Development of Machine-Coded Event Data Techniques for the Analysis of Political Behavior

用于分析政治行为的机器编码事件数据技术的开发

基本信息

  • 批准号:
    9410023
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-07-15 至 1996-12-31
  • 项目状态:
    已结题

项目摘要

9410023 Schrodt This project extends and demonstrates the use of software for the automated coding of political event data. Event data are generated by coding news reports for specific types of political interactions: meetings, agreements, threats, military engagements, etc. These data can then be used to test hypotheses about political behavior. Historically, human coders created event data. Earlier work supported in part by the NSF's Data Development in International Relations project demonstrated, however, that machine coding is capable of assigning event data codes to wire service reports of political events with a reliability at least as great as that achieved by human coders. The initial machine-coding system was tested by generating an 11- year event data set based on Reuters news service reports for the Middle East. These data produced statistical results almost indistinguishable from those produced from human-coded data. The data set and the machine-coding program have been available to political science researchers for the past two years; the system runs on conventional microcomputers. The current project will extend this research in three ways. First, the project will develop an integrated data acquisition and coding system to code event data in real time. These data will be made available on an Internet server for use by other researchers. This system will provide a significant improvement over existing human-coded event data, which typically are not available until years after events have occurred. Second, the project will enhance the machine coding program in several ways that have been suggested by research experience with the program. Finally, the project will use the machine-coded data to study two cases of complex political behavior: the Israeli-Palestinian conflict and the ECOWAS international subsystem in West Africa. These two cases are designed to demonstrate the use of the full capabilities of machine coding, particula rly the facility for re- coding texts to detect political activities that may have been missed in the standard event coding systems. In addition to developing techniques for event data analysis, these studies will contribute to understanding the interactions between the international and domestic political systems.
9410023 Schrodt这个项目扩展并演示了政治事件数据自动编码软件的使用。事件数据是通过对特定类型的政治互动(会议、协议、威胁、军事交战等)的新闻报道进行编码而生成的,然后这些数据可以用于测试有关政治行为的假设。从历史上看,人类程序员创建事件数据。早期的工作部分由美国国家科学基金会的国际关系数据开发项目支持,但是,机器编码能够分配事件数据代码的有线服务报告的政治事件的可靠性至少达到人类编码器。最初的机器编码系统通过生成基于路透社中东新闻服务报道的11年事件数据集进行测试。这些数据产生的统计结果几乎与人类编码数据产生的结果没有区别。过去两年,政治学研究人员已经可以使用该数据集和机器编码程序;该系统在传统的微型计算机上运行。目前的项目将从三个方面扩展这项研究。首先,该项目将开发一个综合数据采集和编码系统,对事件数据进行真实的实时编码。这些数据将在互联网服务器上提供给其他研究人员使用。该系统将对现有的人类编码事件数据进行重大改进,这些数据通常在事件发生多年后才可用。第二,该项目将加强机器编码程序的几种方式,已建议的研究经验与程序。最后,该项目将使用机器编码的数据来研究两个复杂的政治行为案例:以色列-巴勒斯坦冲突和西非国家经济共同体在西非的国际子系统。这两个案例旨在展示机器编码的全部功能的使用,特别是重新编码文本以检测标准事件编码系统中可能遗漏的政治活动的设施。除了开发事件数据分析技术外,这些研究将有助于理解国际和国内政治体系之间的相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Schrodt其他文献

Philip Schrodt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Schrodt', 18)}}的其他基金

Collaborative Research: Development of a Technology for Real Time, Ex Ante Forecasting of Intra and International Conflict and Cooperation
合作研究:开发实时、事前预测内部和国际冲突与合作的技术
  • 批准号:
    1004414
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Development of a Technology for Real Time, Ex Ante Forecasting of Intra and International Conflict and Cooperation
合作研究:开发实时、事前预测内部和国际冲突与合作的技术
  • 批准号:
    0921027
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Methods for the Analysis of Political Event Data
合作研究:政治事件数据分析的计算方法
  • 批准号:
    0455158
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
AOC: Collaborative Research: The Dissent/Repression Nexus in the Middle East
AOC:合作研究:中东的异议/镇压关系
  • 批准号:
    0527564
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Short Term Prediction of International Events Using Pattern Recognition
使用模式识别对国际事件进行短期预测
  • 批准号:
    8910738
  • 财政年份:
    1989
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research on Modeling International Inter- Actions
国际互动建模合作研究
  • 批准号:
    8025053
  • 财政年份:
    1981
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
  • 批准号:
    MR/Y033884/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Excellence in Research:Towards Data and Machine Learning Fairness in Smart Mobility
卓越研究:实现智能移动中的数据和机器学习公平
  • 批准号:
    2401655
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了