Autoregressive Conditional Duration, Arch, Common Features and Cointegration
自回归条件持续时间、拱形、共同特征和协整
基本信息
- 批准号:9422575
- 负责人:
- 金额:$ 19.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-01 至 1998-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
SBR-9422575 Robert Engle As computers increase in power and memory it becomes feasible to collect and analyze data at higher and higher frequencies. Data sets that record every transaction-- the highest frequency possible-- now exist for many financial data sets as well as microeconomic transactions such as telephone calls and credit card purchases that are recorded by computers. The analysis of such data sets poses new and interesting econometric challenges, one of them being the choice of the proper interval of time within which to aggregate the data so as to generate a data set with observations spaced evenly apart. The problem with fixed interval analysis is that it can leave the investigator with many uninformative data points or disguise the periods of most interest. The PI proposes an alternative to fixed interval analysis which he calls autoregressive conditional duration. Instead of selection a fixed interval for analyzing the data, it is proposed to let the interval between transactions be the random variable to be analyzed. Thus the data set becomes a list of durations and characteristics of each transaction. This procedure models the time intervals directly without using auxiliary data or imposing assumptions on the causes of the time flow. The ACD model is used to analyze the price, volume and duration process for IBM stock transactions. This research can help institutions forecast market liquidity and volatility on a high frequency basis. It can also have implications for government interventions in financial markets either through transactions or through circuit breakers. The research also includes a number of other projects. One project examines non-linear business cycles. The nature of the non-linearities is always difficult to extract because there are relatively few cycles in recent history. However, if sectors and final goods categories regions of the country all participate in the business cycle, then the non-linearities ought to be common and easier to detect. An economic model is developed to motive these ideas. Another project involves using ARCH models of volatility to produce a term structure of volatility forecasts. These forecasts can be used to construct a portfolio whose value is unaffected by portfolio shocks. Such portfolios provide a new dimension in which to examine the accuracy of volatility forecasts: Is the term structure of volatility adequate to reduce the variance of such multiple maturity portfolios?
罗伯特·恩格尔(Robert Engle) 随着计算机功率和内存的增加,以越来越高的频率收集和分析数据变得可行。 记录每一笔交易的数据集----可能的最高频率----现在存在于许多金融数据集以及微观经济交易中,如电话和信用卡购买,这些交易由计算机记录。 对这些数据集的分析提出了新的和有趣的计量经济学挑战,其中之一是选择适当的时间间隔来汇总数据,以便生成一个具有均匀间隔的观测数据集。 固定区间分析的问题在于,它可能会给研究者留下许多无意义的数据点,或者掩盖最感兴趣的时期。 PI提出了一种固定区间分析的替代方法,他称之为自回归条件久期。 该方法不选择固定的时间间隔进行数据分析,而是将交易间隔作为随机变量进行分析。 因此,数据集成为每个事务的持续时间和特征的列表。 该过程直接对时间间隔进行建模,而不使用辅助数据或对时间流的原因进行假设。 ACD模型是用来分析IBM股票交易的价格,数量和持续时间的过程。 这一研究可以帮助机构预测市场的流动性和波动性的高频基础上。 它还可能对政府通过交易或断路器干预金融市场产生影响。 该研究还包括一些其他项目。 其中一个项目研究非线性商业周期。 非线性的本质总是很难提取,因为在近代历史中周期相对较少。 然而,如果一个国家的部门和最终产品类别地区都参与商业周期,那么非线性应该是常见的,更容易检测。 一个经济模型被开发来激发这些想法。 另一个项目涉及使用波动率的长期预测模型来产生波动率预测的期限结构。 这些预测可以用来构建一个投资组合,其价值不受投资组合冲击的影响。 此类投资组合提供了一个新的维度来检查波动率预测的准确性:波动率的期限结构是否足以减少此类多期限投资组合的方差?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Engle其他文献
Multiplicative factor model for volatility
波动率的乘法因子模型
- DOI:
10.1016/j.jeconom.2025.105959 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:4.000
- 作者:
Yi Ding;Robert Engle;Yingying Li;Xinghua Zheng - 通讯作者:
Xinghua Zheng
Federal Reserve Bank of New York Staff Reports Efficient Regression-based Estimation of Dynamic Asset Pricing Models Efficient Regression-based Estimation of Dynamic Asset Pricing Models
纽约联邦储备银行工作人员报告动态资产定价模型的高效基于回归的估计 动态资产定价模型的高效基于回归的估计
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Tobias Adrian;Richard K. Crump;Emanuel Moench;Fernando Duarte;Darrell Duffie;Robert Engle;Arturo Estrella;Andreas Fuster;Eric Ghysels;Monika Piazzesi;M. Sockin;Jonathan Wright - 通讯作者:
Jonathan Wright
Environmental, Social, Governance: Implications for businesses and effects for stakeholders
环境、社会、治理:对企业的影响和对利益相关者的影响
- DOI:
10.1002/csr.2184 - 发表时间:
2021 - 期刊:
- 影响因子:9.8
- 作者:
Robert Engle;M. Brogi;Nicola Cucari;Valentina Lagasio - 通讯作者:
Valentina Lagasio
Robert Engle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Engle', 18)}}的其他基金
GEOVOL: A NEW STATISTICAL MODEL FOR GEOPOLITICAL RISK
GEOVOL:地缘政治风险的新统计模型
- 批准号:
2018923 - 财政年份:2020
- 资助金额:
$ 19.79万 - 项目类别:
Standard Grant
Macro-Dynamic Modeling of Systemic Risk
系统性风险的宏观动态建模
- 批准号:
1427137 - 财政年份:2015
- 资助金额:
$ 19.79万 - 项目类别:
Standard Grant
Accomplishment Based Renewal of: Autoregressive Conditional Duration, Arch, Common Features, and Cointegration
基于成就的更新:自回归条件持续时间、拱形、共同特征和协整
- 批准号:
9730062 - 财政年份:1998
- 资助金额:
$ 19.79万 - 项目类别:
Continuing Grant
Arch, Cointegration and Common Features: Theory and Application
Arch、协整和共同特征:理论与应用
- 批准号:
9122056 - 财政年份:1992
- 资助金额:
$ 19.79万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Multinational EconometricPolicy Analysis
美法合作研究:跨国计量经济政策分析
- 批准号:
9016998 - 财政年份:1991
- 资助金额:
$ 19.79万 - 项目类别:
Standard Grant
New Research in Arch and Cointegration
Arch 和协整的新研究
- 批准号:
8910273 - 财政年份:1989
- 资助金额:
$ 19.79万 - 项目类别:
Continuing Grant
Econometric Modeling of Processes with Varying Structural Parameters
具有变化结构参数的过程的计量经济学建模
- 批准号:
8705884 - 财政年份:1987
- 资助金额:
$ 19.79万 - 项目类别:
Continuing Grant
Econometric Research on ARCH Models
ARCH模型的计量经济学研究
- 批准号:
8420680 - 财政年份:1985
- 资助金额:
$ 19.79万 - 项目类别:
Standard Grant
Econometric Models With Stochastic Variance
具有随机方差的计量经济模型
- 批准号:
8008580 - 财政年份:1980
- 资助金额:
$ 19.79万 - 项目类别:
Standard Grant
相似海外基金
AIGMob: Conditional Generative AI for Fine-grained Urban Mobility Simulation
AIGMob:用于细粒度城市交通模拟的条件生成人工智能
- 批准号:
24K02996 - 财政年份:2024
- 资助金额:
$ 19.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Regularization for Nonlinear Panel Models, Estimation of Heterogeneous Taxable Income Elasticities, and Conditional Influence Functions
非线性面板模型的正则化、异质应税收入弹性的估计和条件影响函数
- 批准号:
2242447 - 财政年份:2023
- 资助金额:
$ 19.79万 - 项目类别:
Standard Grant
Conditional male lethal Anopheles stephensi line for the efficient manufacture of malaria vaccines
用于高效生产疟疾疫苗的条件性雄性致死史氏按蚊品系
- 批准号:
10602811 - 财政年份:2023
- 资助金额:
$ 19.79万 - 项目类别:
A suite of conditional mouse models for secretome labeling
一套用于分泌蛋白组标记的条件小鼠模型
- 批准号:
10640784 - 财政年份:2023
- 资助金额:
$ 19.79万 - 项目类别:
Generating a novel conditional knockout mouse for a super-enhancer that controls cytokine responsiveness
生成一种新型条件敲除小鼠,用于控制细胞因子反应的超级增强子
- 批准号:
10740932 - 财政年份:2023
- 资助金额:
$ 19.79万 - 项目类别:
Cis-regulation and conditional chromatin remodeling in development and evolution of ontogenies in horned beetles
角甲虫个体发育和进化中的顺式调节和条件染色质重塑
- 批准号:
2243725 - 财政年份:2023
- 资助金额:
$ 19.79万 - 项目类别:
Continuing Grant
Development of a conditional ataxin-1 knockout mouse line
条件性ataxin-1基因敲除小鼠品系的开发
- 批准号:
10642313 - 财政年份:2023
- 资助金额:
$ 19.79万 - 项目类别:
Non Magnetic MRI Conditional External Defibrillator with Reduced Skeletal Muscle Contraction
减少骨骼肌收缩的非磁 MRI 条件性体外除颤器
- 批准号:
10698845 - 财政年份:2023
- 资助金额:
$ 19.79万 - 项目类别:
Subcube Conditional Samples And Testing Properties Of Probability Distributions
子立方条件样本和概率分布的测试属性
- 批准号:
EP/Y001680/1 - 财政年份:2023
- 资助金额:
$ 19.79万 - 项目类别:
Research Grant
Development of deconvolution method for bulk RNA-Seq by conditional variational autoencoder
通过条件变分自动编码器开发批量 RNA-Seq 的反卷积方法
- 批准号:
23K11302 - 财政年份:2023
- 资助金额:
$ 19.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)