Closed Geodesics in 2-Step Nilmanifolds (Mathematics)
两步 Nilmanifold 中的闭合测地线(数学)
基本信息
- 批准号:9450114
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-09-01 至 1995-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research activities will focus on geodesic behavior in 2-step nilpotent metric Lie groups. One successful approach to studying the geometry of a given Lie group is to examine the algebraic structure of its associated Lie algebra. Particular emphasis will be given to Lie groups which are singular. Singularity is determined by the singularity of a set of skew-symmetric linear transformations defined on the center of the associated Lie algebra. Dr. Maura Mast intends to use apply previous methods used in the study of the geometry of 2-step nilpotent nonsingular Lie groups to the study of singular Lie groups. She also intends to apply her results on lengths of closed geodesics in 2-step nilmanifolds to problems in spectral geometry. Interactive activities include: teaching a graduate level Differentiable Manifolds course and a beginning Calculus course; participating actively in seminars at Northeastern University and other school in the Boston area; working with Northeastern University to develop methods to recruit and retain math majors; and initiating discussion and support groups for women in science and mathematics.
研究活动将集中在两步幂零度量李群中的测地线行为。研究给定李群的几何的一个成功的方法是研究它的相关李代数的代数结构。我们将特别强调奇异李群。奇点是由定义在相关李代数中心上的一组斜对称线性变换的奇点决定的。Maura Mast博士打算将以前研究两步幂零非奇异李群几何的方法应用到奇异李群的研究中。她还打算将她关于两步零流形中闭测地线长度的结果应用于谱几何中的问题。互动活动包括:教授研究生水平的可微流形课程和微积分入门课程;积极参加东北大学和波士顿地区其他学校的研讨会;与东北大学合作制定招收和留住数学专业学生的方法;以及发起针对科学和数学领域女性的讨论和支持小组。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maura Mast其他文献
Maura Mast的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maura Mast', 18)}}的其他基金
Common Sense: Quantitative Reasoning in the Undergraduate Curriculum
常识:本科课程中的定量推理
- 批准号:
0942186 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Computer Science, Engineering, and Mathematics Scholarship Program (CSEMS)
计算机科学、工程和数学奖学金计划 (CSEMS)
- 批准号:
0094799 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Asymptotic behavior of null geodesics near future null infinity and its application
近未来零无穷大零测地线的渐近行为及其应用
- 批准号:
22KJ1933 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Finding Efficient Paths: Estimating the Lengths of Geodesics in Higher-Dimensional Spheres
寻找有效路径:估计高维球体中测地线的长度
- 批准号:
576186-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Geodesics in noncommutative Riemannian geometry
非交换黎曼几何中的测地线
- 批准号:
571975-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Quantitative Geometry and Geodesics
定量几何和测地线
- 批准号:
559253-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
New applications of cut loci and problems related to geodesics
切割轨迹的新应用及测地线相关问题
- 批准号:
21K03238 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geodesics in noncommutative Riemannian geometry
非交换黎曼几何中的测地线
- 批准号:
561794-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Quantitative Geometry and Geodesics
定量几何和测地线
- 批准号:
559253-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Intersection numbers of geodesics on Shimura curves and modular curves.
Shimura 曲线和模曲线上测地线的交点数。
- 批准号:
533676-2018 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Geodesics in Culler-Vogtmann Outer Space
卡勒-沃格特曼外层空间的测地线
- 批准号:
551353-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Closed geodesics on surfaces
曲面上的闭合测地线
- 批准号:
541067-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards